ZHAO Hai-bo, ZHENG Chu-guang. Stochastic Algorithm and Numerical Simulation for Drop Scavenging of Aerosols[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1159-1168.
Citation: ZHAO Hai-bo, ZHENG Chu-guang. Stochastic Algorithm and Numerical Simulation for Drop Scavenging of Aerosols[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1159-1168.

Stochastic Algorithm and Numerical Simulation for Drop Scavenging of Aerosols

  • Received Date: 2005-04-29
  • Rev Recd Date: 2006-07-10
  • Publish Date: 2006-10-15
  • The time evolution of aerosol size distribution during precipitation, which is founded mathematically by general dynamic equation (GDE) for wet removal, describes quantitatively the process of aerosol wet scavenging. The equation depends on aerosol size distribution, raindrop size distribution and the complicated model of scavenging coefficient that takes account of the important wet removal mechanisms such as Brownian diffusion, interception and inertial impaction. Normal numerical methods can hardly solve GDE, which is a typical partially integro-differential equation. A new multi-Monte Carlo method was introduced to solve GDE for wet removal, and then was used to simulate the wet scavenging of aerosols in the real atmospheric environment. The results of numerical simulation show that, the smaller the lognormal raindrop size distribution and lognormal initial aerosol size distribution, the smaller geometric mean diameter or geometric standard deviation of raindrops can help scavenge small aerosols and intermediate size aerosols better, though large aerosols are prevented from being collected in some ways.
  • loading
  • [1]
    Mircea M,Stefan S. A theoretical study of the microphysical parameterization of the scavenging coefficient as a function of precipitation type and rate[J].Atmospheric Environment,1998,32(17):2931—2938. doi: 10.1016/S1352-2310(98)00018-1
    [2]
    Mircea M, Stefan S,Fuzzi S.Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions[J].Atmospheric Environment,2000,34(30):5169—5174. doi: 10.1016/S1352-2310(00)00199-0
    [3]
    Chate D M, Pranesha T S.Field studies of scavenging of aerosols by rain events[J].Journal of Aerosol Science,2004,35(6):695—706. doi: 10.1016/j.jaerosci.2003.09.007
    [4]
    Loosmore G A, Cederwall R T. Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data[J].Atmospheric Environment,2004,38(7):993—1003. doi: 10.1016/j.atmosenv.2003.10.055
    [5]
    Zhang L M, Michelangeli D V, Taylor P A. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation[J].Atmospheric Environment,2004,38(28):4653—4665. doi: 10.1016/j.atmosenv.2004.05.042
    [6]
    Jung C H, Kim Y P, Lee K W. Analytic solution for polydispersed aerosol dynamics by a wet removal process[J].Journal of Aerosol Science,2002,33(5):753—767. doi: 10.1016/S0021-8502(01)00209-9
    [7]
    Jung C H, Kim Y P, Lee K W. A moment model for simulating raindrop scavenging of aerosols[J].Journal of Aerosol Science,2003,34(9):1217—1233. doi: 10.1016/S0021-8502(03)00098-3
    [8]
    Friedlander S K.Smoke, Dust and Haze: Fundamentals of Aerosol Behavior[M].New York:Wiley, 1997.
    [9]
    Liffman K. A direct simulation Monte-Carlo method for cluster coagulation[J].Journal of Computational Physics,1992,100(1):116—127. doi: 10.1016/0021-9991(92)90314-O
    [10]
    Garcia A L, Van den Broek C, Aertsens M,et al.A Monte Carlo simulation of coagulation[J].Physica A,1987,143(3):535—546. doi: 10.1016/0378-4371(87)90164-6
    [11]
    Maisels A, Kruis F E, Fissan H. Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems[J].Chemical Engineering Science,2004,59(11):2231—2239. doi: 10.1016/j.ces.2004.02.015
    [12]
    Lin Y, Lee K, Matsoukas T. Solution of the population balance equation using constant-number Monte Carlo[J].Chemical Engineering Science,2002,57(12):2241—2252. doi: 10.1016/S0009-2509(02)00114-8
    [13]
    ZHAO Hai-bo,ZHENG Chu-guang,XU Ming-hou.Multi-Monte Carlo method for coagulation and condensation/evaporation in dispersed systems[J].Journal of Colloid and Interface Science,2005,286(1):195—208. doi: 10.1016/j.jcis.2004.12.037
    [14]
    ZHAO Hai-bo, ZHENG Chu-guang,XU Ming-hou.Multi-Monte Carlo approach for general dynamic equation considering simultaneous particle coagulation and breakage [J].Powder Technology,2005,154(2/3):164—178. doi: 10.1016/j.powtec.2005.04.042
    [15]
    ZHAO Hai-bo,ZHENG Chu-guang.Monte Carlo solution of wet removal of aerosols by precipitation[J].Atmospheric Environment,2006,40(8):1510—1525. doi: 10.1016/j.atmosenv.2005.10.043
    [16]
    赵海波,郑楚光,徐明厚.求解考虑颗粒凝并的通用动力学方程的多重Monte Carlo算法[J].应用数学和力学,2005,26(7):875—882.
    [17]
    赵海波,郑楚光,徐明厚.凝并和成核机理下颗粒尺度分布的Monte Carlo求解[J]. 高等学校化学学报,2005,26(11):2086—2089.
    [18]
    赵海波,郑楚光.同时发生的颗粒凝并和沉积现象的Monte Carlo模拟[J].中国科学,E辑:技术科学,2006,36(3):270—284.
    [19]
    赵海波,郑楚光,陈胤密.考虑颗粒碰撞的多重Monte Carlo算法[J].力学学报,2005,37(5):564—572.
    [20]
    Slinn W G N.Precipitation scavenging[A].In: Raderson D,Ed.Atmospheric Sciences and Power Production, Division of Biomedical Environmental Research[C].Washington D C:US Department of Energy, 1983, 466—532.
    [21]
    盛裴轩,毛节太,李建国,等.大气物理学[M].北京:北京大学出版社, 2003,332—333.
    [22]
    Greenfield S.Rain scavenging of radioactive particulate matter from the atmosphere[J].Journal of Meteorology,1957,14(2):115—125. doi: 10.1175/1520-0469(1957)014<0115:RSORPM>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2593) PDF downloads(713) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return