Citation: | ZHANG Neng-hui, WANG Jian-jun, CHENG Chang-jun. Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String[J]. Applied Mathematics and Mechanics, 2007, 28(1): 1-8. |
[1] |
陈立群,Zu J W.轴向运动弦线的纵向振动及其控制[J]. 力学进展,2001,31(4):535-546.
|
[2] |
Pakdemirli M, Ulsoy A G.Stability analysis of an axially accelerating string[J].J Sound Vib,1997,203(5):815-832. doi: 10.1006/jsvi.1996.0935
|
[3] |
吴俊,陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,25(9):917-926.
|
[4] |
周洪刚,朱凌,郭乙木. 轴向加速度运动弦线横向振动的数值计算方法[J].机械强度,2004,26(1):16-19.
|
[5] |
CHEN Li-qun,ZHAO Wei-jia,Zu J W. Simulations of transverse vibrations of an axially moving string: A modified difference approach [J].Applied Mathematics and Computation,2005,166(3):596-607. doi: 10.1016/j.amc.2004.07.006
|
[6] |
Chen T M. The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams[J].Int J Numerical Method Eng,1995,38(3):509-522. doi: 10.1002/nme.1620380310
|
[7] |
Ni Y Q,Lou W J,Ko J M.A hybrid pseu-force/Laplace transform method for nonlinear transient response of a suspended cable[J].J Sound Vib,2000,238(2):189-124. doi: 10.1006/jsvi.2000.3082
|
[8] |
CHEN Li-qun,ZHANG Neng-hui,Zu J W.The regular and chaotic vibrations of an axially moving viscoelastic string based on 4-order Galerkin truncation[J].J Sound Vib,2003,261(4):764-773. doi: 10.1016/S0022-460X(02)01281-6
|
[9] |
CHEN Li-qun,ZHANG Neng-hui,Zu J W. Bifurcation and chaos in nonlinear vibrations of a moving viscoelastic string[J].Mechanics Research Communications,2002,29(2/3):81-90. doi: 10.1016/S0093-6413(02)00241-0
|
[10] |
CHEN Li-qun,ZHANG Neng-hui.Nonlinear dynamics of axially moving viscoelastic strings based on translating eigenfunctions[A].In:Gutkowski W,Kowalewski T A Eds.The 21st International Congress of Theoretical and Applied Mechanics(IUTAM-ICTAM04)[C].Warszawa: IPPT PAN, 2004,390-391.
|
[11] |
ZHANG Neng-hui,CHEN Li-qun.Nonlinear dynamical analysis of axially moving viscoelastic strings[J].Chaos, Solitons and Fractals,2005,24(4):1065-1074. doi: 10.1016/j.chaos.2004.09.113
|
[12] |
CHEN Li-qun, Zu J W, WU Ju,et al.Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity[J].Journal of Engineering Mathematics,2004,48(2):171-182. doi: 10.1023/B:ENGI.0000011929.17902.87
|
[13] |
CHEN Li-qun,WU Jun, Zu J W. Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J].Nonlinear Dynamics,2004,35(4):347-360. doi: 10.1023/B:NODY.0000027744.15436.ca
|
[14] |
Bolotin V V.Non-Conservation Problems of the Theory of Elastic Stability[M].New York: Macmillan,1963.
|
[15] |
Wickert J A,Mote C D Jr. Classical vibration analysis of axially moving continua[J].ASME J Appl Mech,1990,57(3):738-744. doi: 10.1115/1.2897085
|