ZHANG Qing-bang, DING Xie-ping. g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions[J]. Applied Mathematics and Mechanics, 2007, 28(1): 9-16.
Citation: ZHANG Qing-bang, DING Xie-ping. g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions[J]. Applied Mathematics and Mechanics, 2007, 28(1): 9-16.

g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions

  • Received Date: 2003-12-17
  • Rev Recd Date: 2006-10-11
  • Publish Date: 2007-01-15
  • A new class of g-Eta-monotone mappings and a class of generalized implicit variational-like inclusions involving g-Eta-monotone mappings are introduced. The resolvent operator of g-Eta-monotone mappings is defined and its Lipschitz continuity is presented. An iterative algorithm for approximating the solutions of generalized implicit variational-like inclusions is suggested and analyzed. The convergence of iterative sequence generated by the algorithm is also proved.
  • loading
  • [1]
    Noor M A. Generalized set-valued variational inclusions and resolvent equations[J].J Math Anal Appl,1998,228(1):206-220. doi: 10.1006/jmaa.1998.6127
    [2]
    DING Xie-ping. Generalized implicit quasivariational inclusions with fuzzy set-valued mapping[J].Comput Math Applic,1999,38(1):71-79.
    [3]
    DING Xie-ping. Generalized quasi-variational-like inclusions with fuzzy mapping and nonconvex functionals[J].Adv Nonlinear Var Inequal,1999,2(2):13-29.
    [4]
    DING Xie-ping,Park J Y.A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mapping[J].J Comput Appl Math,2002,138(2):243-257. doi: 10.1016/S0377-0427(01)00379-X
    [5]
    DING Xie-ping.Algorithms of solutions for completely generalized mixed implicit quasi-variational inclusions[J].Appl Math Comput,2004,148(1):47-66. doi: 10.1016/S0096-3003(02)00825-1
    [6]
    Liu L W,Li Y Q.On generalized set-valued variational inclusions[J].J Math Anal Appl,2001,261(1):231-240. doi: 10.1006/jmaa.2001.7493
    [7]
    FANG Ya-ping,HUANG Nan-jing.H-monotone operator and resolvent operator technique for variational inclusions[J].Appl Math Comput,2003,145(2/3):795-803. doi: 10.1016/S0096-3003(03)00275-3
    [8]
    Lee C H, Ansari Q H, Yao J C. Aperturbed algorithms for strongly nonlinear variational-like inclusion[J].Bull Austral Math Soc,2000,62(3):417-426. doi: 10.1017/S0004972700018931
    [9]
    DING Xie-ping.Generalized quasi-variational-like inclusions with nonconvex functionals[J].Appl Math Comput,2001,122(3):267-282. doi: 10.1016/S0096-3003(00)00027-8
    [10]
    Noor M A. Nonconvex functions and variational inequalities[J].J Optim Theory Appl,1995,87(3):615-630. doi: 10.1007/BF02192137
    [11]
    DING Xie-ping,LOU Chung-lin.Perturbed proximal point algorithms for general quasi-variational-like inclusions[J].J Comput Appl Math,2000,113(1/2):153-165. doi: 10.1016/S0377-0427(99)00250-2
    [12]
    HUANG Nan-jing,FANG Ya-ping.A new class of general variational inclusions involving maximal η-monotone mappings[J].Publ Math Debrecen,2003,62(1/2):83-98.
    [13]
    DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed variational-like inequalities[J].Appl Math Comput,2004,152(3):855-865. doi: 10.1016/S0096-3003(03)00602-7
    [14]
    Nadler S B. Mutivalued contraction mapping[J].Pacific J Math,1969,30(3):457-488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2533) PDF downloads(661) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return