Citation: | CUI Deng-lan, LI Yang-cheng. Stability of Equivariant Bifurcation Problems With Two Types of State Variables and Their Unfoldings in the Presence of Parameter Symmetry[J]. Applied Mathematics and Mechanics, 2007, 28(2): 209-215. |
[1] |
Gervais J J. Stability of unfoldings in the context of equivariant contact equivalence[J].Pacific J Math,1988,132(2):283-291.
|
[2] |
Lari-Lavassani A, Lu Y C. On the stability of equivariant bifurcation problems and their unfoldings[J].Can Math Bull,1992,35(2):237-246. doi: 10.4153/CMB-1992-034-x
|
[3] |
Lari-lavassani A, Lu Y C. Equivariant multiparameter bifurcations via singularity theory[J].J Dynamics Differential Equations,1993,5(2):189-218. doi: 10.1007/BF01053160
|
[4] |
Golubitsky M, Stewart I, Schaeffer D C.Singularities and Groups in Bifurcation Theory[M].Vol 2. New York: Springer-Verlag, 1988.
|
[5] |
Arnold V I, Gusein-Zade S M, Varchenko A N.Singularities of Differentiable Maps[M].Vol 1.Basel/Stuttgart:Birk Hauser,1985.
|
[6] |
Damon J. The unfolaling and determinacy theorem for subgroups of A and K[R]. Vol 50,No 306.Memoirs AMS 306, Providence:AMS,1984:1-88.
|
[7] |
CUI Deng-lan,LI Yang-cheng.The unfolding of equivariant bifurcation problems with two types of state variables in the presence of parameter symmetry[J].Acta Mathematica Sinica A,2006,22(5):1433-1440. doi: 10.1007/s10114-005-0712-4
|