Citation: | LIN Zheng-yan, CHENG Zong-mao. Hausdorff Dimension of the Set Generated by Exceptional Oscillations of a Class of N-Parameter Gaussian Processes[J]. Applied Mathematics and Mechanics, 2007, 28(2): 216-224. |
[1] |
Orey S,Taylor S J.How often on a Brownian path does the law of the iterated logarithm fail?[J].Proceedings of the London Mathematical Society,1974,28(1):174-192. doi: 10.1112/plms/s3-28.1.174
|
[2] |
Zacharie D.On the Hausdorff dimension of the set generated by exceptional oscillions of a two-parameter Wiener process[J].Journal of Multivariate Analysis,2001,79(1):52-70. doi: 10.1006/jmva.2000.1927
|
[3] |
Orey S,Pruitt W E.Sample functions of the N-parameter Wiener process[J].The Annals of Probability,1973,1(1):138-163. doi: 10.1214/aop/1176997030
|
[4] |
Lin Z Y,Choi Y K.Some limit theorems for fractional Lévy Brownian fields[J].Stochastic Processes and Their Applications,1999,82(2):229-244. doi: 10.1016/S0304-4149(99)00019-8
|
[5] |
Bingham N,Goldie C,Teugels J.Regular Variation[M].London: Cambridge University Press,1987.
|
[6] |
Khoshnevisan D,Shi Z.Fast Sets and Points for Fractional Brownian Motion.Séminaire de Probabilitiés[M].34.Lecture Notes of Mathematics.Berlin: Springer,2000.
|
[7] |
Khoshnevisan D,Peres Y,Xiao Y.Limsup random fractals[J].Electronic Journal of Probability,2000,5(4):1-24.
|
[8] |
Bradley R C.On the spectral density and asymptotic normality of weakly dependent random fields[J].Journal of Theoretical Probability,1992,5(2):355-373. doi: 10.1007/BF01046741
|