LI Dan, HU Geng-kai. Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration[J]. Applied Mathematics and Mechanics, 2007, 28(3): 270-280.
Citation: LI Dan, HU Geng-kai. Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration[J]. Applied Mathematics and Mechanics, 2007, 28(3): 270-280.

Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration

  • Received Date: 2006-10-10
  • Rev Recd Date: 2006-12-31
  • Publish Date: 2007-03-15
  • Polymeric materials usually present some viscoelastic behavior.To improve the mechanical behavior of these materials,ceramics materials are often filled into the polymeric materials in form of fiber or particle.A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites,especially for high volume concentration of filled particles.The method is based on Laplace transform technique and an elastic model including two-particle interaction.The effective creep compliance and the stress and strain relation at a constant loading rate were analyzed.The results show that the proposed method predicts a significantly stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.
  • loading
  • [1]
    Johnson H D. Mechanical properties of high explosives[R]. Mason and Hanger-Silas Mason Company Inc,Pantex Plant Report,,1974,15.
    [2]
    Johnson H D.Mechanical properties of LX-10-1 evaluated with diametric disc test[R]. Mason and Hanger-Silas Mason Company Inc,Pantex Plant Report,1979,14.
    [3]
    董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989.
    [4]
    Hashin Z.Complex moduli of viscoelastic composite-I. General theory and application to particulate composites[J].Int J Solids Struct,1970,6(5):539-552. doi: 10.1016/0020-7683(70)90029-6
    [5]
    Wang Y M,Weng G J.Influence of inclusion shape on the overall viscoelastic behavior of composites [J].J Appl Mech,1992,59(3): 510-518. doi: 10.1115/1.2893753
    [6]
    Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metall Mater,1973,21(5):571-574. doi: 10.1016/0001-6160(73)90064-3
    [7]
    Brinson L C,Lin W S.Comparison of micromechanical methods for effective properties of multiphase visoelastic composites[J].Composite Structures,1998,41(3/4):353-367. doi: 10.1016/S0263-8223(98)00019-1
    [8]
    Ju J W,Chen T M.Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities[J].Acta Mech,1994,103(1/4):123-144. doi: 10.1007/BF01180222
    [9]
    Ma H L,Hu G K,Huang Z P.A micromechanical method for particulate composites with finite particle concentration[J].Mech Mater,2004,36(4):359-368. doi: 10.1016/S0167-6636(03)00065-6
    [10]
    Naguib H E,Park C B,Panzer U,et al.Strategies for achieving ultra low-density polypropylene foams[J].Polymer Engineering and Science,2002,42(7):1481-92. doi: 10.1002/pen.11045
    [11]
    Hershey A V.The elasticity of an isotropic aggregate of anisotropic cubic crystals[J].J Appl Mech,1954,21(3):226-240.
    [12]
    Christensen R M,L0 K H.Solutions for effective shear properties in three phase space and cylinder model[J].J Mech Phys Solids,1979,27(4): 315-330. doi: 10.1016/0022-5096(79)90032-2
    [13]
    Ponte,Castaeda P,Willis J R.Effect of spatial distribution on the effective behavior of composite materials and cracked media[J].J Mech Phys Solids,1995,43(12):1919-1951. doi: 10.1016/0022-5096(95)00058-Q
    [14]
    Berryman J G,Berge P A.Critique of two explicit schemes for estimating elastic properties of multiphase composites[J].Mechanics of Materials,1996,22(2):149-164. doi: 10.1016/0167-6636(95)00035-6
    [15]
    Kuster G T,Toksoz M N.Velocity and attenuation of seismic waves in two-phase media: I Theoretical formulation[J].Geophysics,1974,39(5): 587-606. doi: 10.1190/1.1440450
    [16]
    Hori M,Nemat-Nasser S.Double-inclusion model and overall moduli of multi-phase composite[J].Mech Mater,1993,14(3):189-206. doi: 10.1016/0167-6636(93)90066-Z
    [17]
    Zheng Q S,Du D X.An explicit and universally applicable estimate for the effective properties of multiphase composite which accounts for inclusion distribution[J].J Mech Phys Solids,2001,49(11):2765-2788. doi: 10.1016/S0022-5096(01)00078-3
    [18]
    Hu G K,Weng G J.The connections between the double inclusion model and the Ponte Castaneda-Willis,Mori-Tanaka, and Kuster-Toksoz Model[J].Mech Mater,2000,32(8):495-503. doi: 10.1016/S0167-6636(00)00015-6
    [19]
    Hu G K,Weng G J.Some reflections on the Mori-Tanaka and Ponte Castaneda-Willis methods with randomly oriented ellipsoidal inclusions[J].Acta Mechanica,2000,140(1):31-40. doi: 10.1007/BF01175978
    [20]
    胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393.
    [21]
    Molinari A,Mouden M E.The problem of elastic inclusion at finite concentration[J].Int J Solids Struct,1996,33(20/22):3131-3150. doi: 10.1016/0020-7683(95)00275-8
    [22]
    Zeller R,Dederichs P H.Elastic constant of polycrystals[J].Phys Status Solidi B,1973,55(2): 831-842. doi: 10.1002/pssb.2220550241
    [23]
    Eshelby J D.The determining of the elastic field of an ellipsoidal inclusion and related problem[J].Proc Roy Soc Lond Ser A,1957,241(1226):376-396. doi: 10.1098/rspa.1957.0133
    [24]
    Percus J K,Yevick G J.Analysis of classical statistical mechanics by means of collective coordinates[J].Physical Review,1958,110(1):1-13. doi: 10.1103/PhysRev.110.1
    [25]
    周萧明,胡更开.高体积分数颗粒增强复合材料有效线性与非线性介电性质的研究[J].应用数学和力学,2006,27(8):891-898.
    [26]
    Skudra A M,Auzukalns Ya V.Creep and long-term strength of unidirectional reinforced plastics in compression[J].Poly Mech, 1970,6(5):718-722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2900) PDF downloads(774) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return