GE Xin-Sheng, CHEN Li-qun. Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat[J]. Applied Mathematics and Mechanics, 2007, 28(5): 539-545.
Citation: GE Xin-Sheng, CHEN Li-qun. Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat[J]. Applied Mathematics and Mechanics, 2007, 28(5): 539-545.

Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat

  • Received Date: 2005-10-18
  • Rev Recd Date: 2007-01-30
  • Publish Date: 2007-05-15
  • The nonholonomic motion planning of a free-falling cat is investigated.Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws.When the total angular momentum is zero,the motion equation of a free-falling cat is established based on the model of two symmetric rigid bodies and conservation of angular momentum.The control of system can be converted to the problem of nonholonomic motion planning for a freefalling cat.Based on Ritz approximation theory,the Gauss-Newton method for motion planning by a falling cat is proposed.The effectiveness of the numerical algorithm is demonstrated through simulation on model of a free-falling cat.
  • loading
  • [1]
    贾书惠.从猫下落谈起[M].北京:高等教育出版社, 1990.
    [2]
    McDonald D A.How does a falling cat turn over[J].Amer J Physiol,1955,129:34-35.
    [3]
    Лойцянский А И.Теоретическ механик[M].Москва: Санкт-Петербург, 1953.
    [4]
    Kane T R,Scher M P.A dynamical explanation of the falling cat phenomenon[J].Int J Solids Structures,1969,5(5):663-670. doi: 10.1016/0020-7683(69)90086-9
    [5]
    刘延柱.自由下落猫的转体运动[J].力学学报,1982,14(4):388-393.
    [6]
    Brockett R W,Dai L.Nonholonomic kinematics and the role of elliptic functions in constructive controllability[A].In:Li Z,Canny J F,Eds.Nonholonomic Motion Planning[C].Boston:Kluwer,1993,1-22.
    [7]
    Murray R M,Sastry S S.Nonholonomic Motion Planning: steering using sinusoids[J].IEEE Transactions on Automatic Control,1993,38(5):700-716. doi: 10.1109/9.277235
    [8]
    Reyhanoglu M,Schaft A,McClamroch N,et al.Dynamics and control of a class of underactuated mechanical systems[J].IEEE Transactions on Automatics Control,1999,44(9):1663-1671. doi: 10.1109/9.788533
    [9]
    Leonard N E,Krishnaprasad P S. Motion control of drift-free, left-invariant systems on lie groups[J].IEEE Transactions on Automatics Control,1995,40(9):1539-1554 doi: 10.1109/9.412625
    [10]
    Fernandes C,Gurvits L,Li Z. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies[J].IEEE Transaction Automation Control,1995,39(3):450-464.
    [11]
    刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [12]
    Courant R,Hilbert D.Methods of Mathematical Physics[M].VolⅠ.New York: Wiley,1955.
    [13]
    Joshi M C,Moudgalya K M.Optimization-Theory and Practice[M].Harrow,U K:Alpha Science International Ltd. 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3295) PDF downloads(720) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return