Citation: | YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630. |
[1] |
Chow S N,Mallet-Parat J,Shen W.Traveling waves in lattice dynamical systems[J].J Diff Equa,1998,149(2):248-291. doi: 10.1006/jdeq.1998.3478
|
[2] |
Shen W.Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices[J].SIAM J Appl Math,1996,56(5):1379-1399. doi: 10.1137/S0036139995282670
|
[3] |
Yu J, Collective behavior of coupled map lattices with asymmetrical coupling[J].Phys Lett A,1998,240(1/2):60-64.
|
[4] |
Bates P W,Lu K,Wang B,Attractors for lattice dynamical systems[J].Int J Bifurcations and Chaos,2001,11(1):143-152.
|
[5] |
ZHOU Sheng-fan.Attractor for second order lattice dynamical system[J].J Diff Equa,2002,179(2):605-624. doi: 10.1006/jdeq.2001.4032
|
[6] |
Babin A V,Vishik M I.Attractors of Evolutionary Equations[M].Nauka, Moscow 1989; English transl stud Math Appl,Vol 25.Amsterdam:North Holland,1992.
|
[7] |
GUO Bo-lin,LI Yong-sheng, Attractors for Klein-Gordon-Schrdinger Equation in R3[J].J Diff Equa,1997,136(1):356-377.
|
[8] |
Lu K, Wang B,Attractor for Klein-Gordon-Schrdinger equation in unbounded domains[J].J Diff Equa,2001,170(1):281-316.
|
[9] |
Chepyzhov, V V, Vishik M I.Kolmogorov's ε-entropy for the attractor of reaction-diffusion equation[J].Math Sbornik,1998,189(2):81-110. doi: 10.4213/sm301
|
[10] |
ZHOU Sheng-fan.On dimension of the global attractor for damped nonlinear wave equation[J].J Math Phys,1999,40(3):1432-1438. doi: 10.1063/1.532813
|
[11] |
Hale J K.Asymptotic Behavior of Dissipative Systems[M].Rhode Island:Amer Math Soc providence,1988.
|
[12] |
Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].Appl Math Sci[STHZ]. 68[STBZ]. New York:Springer-Verlag,1988.
|
[13] |
Hayashi N, Von Wahl W.On the global strong solutions of coupled Klein-Gordon-Schrdinger equations[J].J Math Soc Japan,1987,39(2):489-497.[JP3]. Lorentz G, GolitschekM, Makovoz Y.Constructive Approximation. Advanced Problem. Grundlehrender Mathematischen Wissenschaften[M].([Functional Principles of Mathematical Sciences]. Vol 304).Berlin:Springer-Verlag,1996. doi: 10.2969/jmsj/03930489
|