BIAN Wen-feng, WANG Biao. Dual Equations and Solutions of Ⅰ-Type Crack of Dynamic Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 651-658.
Citation: BIAN Wen-feng, WANG Biao. Dual Equations and Solutions of Ⅰ-Type Crack of Dynamic Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 651-658.

Dual Equations and Solutions of Ⅰ-Type Crack of Dynamic Problems in Piezoelectric Materials

  • Received Date: 2005-10-18
  • Rev Recd Date: 2007-03-30
  • Publish Date: 2007-06-15
  • Firstly,basic differential equations of piezoelectric materials expressed in terms of the potential functions,which are introduced in the very beginning,were worked out.Then these equations were primarily solved through Laplace transformation,seiminfinite Fourier sine transformation and cosine transformation.After that,the dual equations of dynamic cracks problem in the 2D piezoelectric materials were founded with the help of Fourier reverse transformation and the introduction of boundary conditions.Finally,according to the character of the Bessel function and by making ful use of Abel integral equation and its reverse transform,the dual equations were changed into the second type of Fredholm integral equations.The investigation indicates that the study approach taken is feasible and has potential to be an effective method to do research on issues of this kind.
  • loading
  • [1]
    WANG Biao. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J].Internat J Solids Struct,1992,29(3):293-308. doi: 10.1016/0020-7683(92)90201-4
    [2]
    WANG Biao. Three dimensional analysis of a flat elliptical crack in a piezoelectric material[J].Internat J Engrg Sci,1992,30(6):781-791. doi: 10.1016/0020-7225(92)90107-R
    [3]
    ZHOU Zhen-gong,SUN Jian-liang,WANG Biao. Investigation of the behavior of a crack in a piezoelectric material subjected to a uniform tension loading by use of the non-local theory[J].Internat J Engrg Sci,2004,42(19/20):2041-2063. doi: 10.1016/j.ijengsci.2004.08.004
    [4]
    Pak Y E.Crack extension force in a piezoelectric material[J].J Appl Mech,1990,57(3):647-653. doi: 10.1115/1.2897071
    [5]
    Khutoryansky H M,Sosa H.Dynamic representation formulas and fundamental solutions for piezoelectricity[J].Internat J Solids Structures,1995,32(22):3307-3325. doi: 10.1016/0020-7683(94)00308-J
    [6]
    侯密山,边文凤. 反平面电弹性断裂动力问题的拟应力解[J]. 机械强度,2001,23(3):326-328.
    [7]
    Chen Z T,Yu S W. Anti-plane Yoffe crack problem in piezoelectric materials[J].Internat J Fracture,1997,84(3): L41-L45.
    [8]
    Erdélyi A.高级超越函数[M].第二册.张致中 译.上海:科学技术出版社, 1958.
    [9]
    王竹溪,郭敦仁.特殊函数概论[M].北京:科学出版社, 1979.
    [10]
    张石生. 积分方程[M].重庆:重庆出版社, 1988.
    [11]
    边文凤.电弹性问题的势函数解和辛解[D].博士论文.哈尔滨: 哈尔滨工业大学,2006.
    [12]
    边文凤,王彪,贾宝贤.动态裂纹积分变换法中的数学问题[J].应用数学和力学,2004,25(3):228-232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2729) PDF downloads(704) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return