Servet Kutukcu, Adnan Tuna, Atakan T. Yakut. Generalized Contraction Mapping Principle in Intuitionistic Menger Spaces and an Application to Differential Equations[J]. Applied Mathematics and Mechanics, 2007, 28(6): 713-723.
Citation: Servet Kutukcu, Adnan Tuna, Atakan T. Yakut. Generalized Contraction Mapping Principle in Intuitionistic Menger Spaces and an Application to Differential Equations[J]. Applied Mathematics and Mechanics, 2007, 28(6): 713-723.

Generalized Contraction Mapping Principle in Intuitionistic Menger Spaces and an Application to Differential Equations

  • Received Date: 2006-07-10
  • Rev Recd Date: 2007-02-01
  • Publish Date: 2007-06-15
  • Using the idea of Atanassov,the notion of intuitionistic Menger spaces was defined as a natural generalizations of Menger spaces due to Menger.A new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces were obtained.
  • loading
  • [1]
    Menger K. Statistical metric spaces[J].Proc Nat Acad Sci,1942,28:535-537. doi: 10.1073/pnas.28.12.535
    [2]
    Schweizer B,Sklar A. Statistical metric spaces[J].Pacific J Math,1960,10(1):313-334.
    [3]
    Schweizer B,Sklar A.Probabilistic Metric Spaces[M].New York:North-Holland,1983.
    [4]
    Schweizer B, Sklar A,Thorp E. The metrization of statistical metric spaces[J].Pacific J Math,1960,10:673-675.
    [5]
    Chang S S, Lee B S,Cho Y J,et al.Generalized contraction mapping principle and differential equations in probabilistic metric spaces[J].Proceedings of the American Mathematical Society,1996,124(8):2367-2376. doi: 10.1090/S0002-9939-96-03289-3
    [6]
    Hadzic O,Pap E.Fixed Point Theory in Probabilistic Metric Spaces[M].Dordrecht:Kluwer Acad Pub,2001.
    [7]
    Hadzic O, Pap E,Radu V. Generalized contraction mapping principles in probabilistic metric spaces[J].Acta Math Hungar,2003,101(1/2):131-148.
    [8]
    Mihet D. On the contraction principle in Menger and non-Archimedean Menger spaces[J].An Univ Timisoara Ser Mat Inform,1994,32(2):45-50.
    [9]
    Klement E P, Mesiar R,Pap E.Triangular Norms[M].Trends in Logic 8.Dordrecht:Kluwer Acad Pub,2000.
    [10]
    Radu V.Lectures on Probabilistic Analysis[M].West University of Timisoara, 1996.
    [11]
    Radu V. Some remarks on the probabilistic contractions on fuzzy Menger spaces[A/J]. In:The Eighth Internat Conf on Applied Mathematics and Computer Science[C].Cluj-Napoca, 2002;Automat Comput Appl Math,2002,11(1):125-131.
    [12]
    Kramosil O,Michalek J. Fuzzy metric and statistical metric spaces[J].Kybernetica,1975,11:326-334.
    [13]
    George A,Veeramani P. On some results in fuzzy metric spaces[J].Fuzzy Sets and Systems,1994,64:395-399. doi: 10.1016/0165-0114(94)90162-7
    [14]
    Mihet D. A Banach contraction theorem in fuzzy metric spaces[J].Fuzzy Sets and Systems,2004,144:431-439. doi: 10.1016/S0165-0114(03)00305-1
    [15]
    Park J H. Intuitionistic fuzzy metric spaces[J].Chaos, Solitons & Fractals,2004, 22:1039-1046.
    [16]
    Kelley J L.General Topology[M].Princeton, 1955.
    [17]
    Atanassov K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20:87-96. doi: 10.1016/S0165-0114(86)80034-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2562) PDF downloads(758) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return