MENG Xin-zhu, CHEN Lan-sun, SONG Zhi-tao. Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1134.
Citation: MENG Xin-zhu, CHEN Lan-sun, SONG Zhi-tao. Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1134.

Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination

  • Received Date: 2007-01-23
  • Rev Recd Date: 2007-04-16
  • Publish Date: 2007-09-15
  • A robust SEIR epidemic disease model with a profitless delay and vertical transmission was formulated, and the dynamics behaviors of the model under pulse vaccination were analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an infection-free. periodic solution was obtained. Further, it is shown that the infection-free. periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, sufficient condition with time delay for the permanence of the system was obtained. And it was proved, that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is "profitless".
  • loading
  • [1]
    Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213. doi: 10.1016/S0025-5564(99)00030-9
    [2]
    Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM Journal on Applied Mathematics,2001,62(1):58-69. doi: 10.1137/S0036139999359860
    [3]
    Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[J].Applied Mathematics and Computation,2004,152(1):169-194. doi: 10.1016/S0096-3003(03)00554-X
    [4]
    Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J].Mathematical and Computer Modelling,1997,25(5):85-107.
    [5]
    LI Gui-hua,JIN Zhen.Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J].Chaos, Solitons and Fractals,2005,25(5):1177-1184. doi: 10.1016/j.chaos.2004.11.062
    [6]
    Hethcote H W,Stech H W,Van den Driessche P.Periodicity and stability in epidemic models: A survey[A].In:Differential Equations and Applications in Ecology,Epidemics,and Population Problems[M].New York:Academic Press,1981,65-85.
    [7]
    D'Onofrio Alberto.Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Mathematical Biosciences,2002,179(1):57-72. doi: 10.1016/S0025-5564(02)00095-0
    [8]
    D'Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J].Applied Mathematics and Computation,2004,151(1):181-187. doi: 10.1016/S0096-3003(03)00331-X
    [9]
    Fine P M.Vectors and vertical transmission: an epidemiologic perspective[J].Annals of the New York Academy of Sciences,1975,266(11):173-194. doi: 10.1111/j.1749-6632.1975.tb35099.x
    [10]
    Busenberg S,Cooke K L,Pozio M A.Analysis of a model of a vertically transmitted disease[J].Journal of Mathematical Biology,1983,17(3):305-329.
    [11]
    Busenberg S N,Cooke K L.Models of vertical transmitted diseases with sequenty-continuous dynamics[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,179-187.
    [12]
    Cook K L,Busenberg S N.Vertical transmission diseases[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,189.
    [13]
    LU Zhong-hua,CHI Xue-bin,CHEN Lan-sun.The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J].Mathematical and Computer Modelling,2002,36(9):1039-1057. doi: 10.1016/S0895-7177(02)00257-1
    [14]
    D'Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,18(7):729-732. doi: 10.1016/j.aml.2004.05.012
    [15]
    Nokes D, Swinton J.The control of childhood viral infections by pulse vaccination[J].IMA Journal Mathematics Applied Biology Medication,1995,12(1):29-53. doi: 10.1093/imammb/12.1.29
    [16]
    ZENG Guang-zhao,CHEN Lan-sun.Complexity and asymptotical behavior of an SIRS epidemic model with proportional implse vaccination[J].Advances in Complex Systems,2005,8(4):419-431. doi: 10.1142/S0219525905000580
    [17]
    Van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. doi: 10.1007/s002850000032
    [18]
    Van den Driessche P, Watmough J. Epidemic solutions and endemic catastrophes[J].Fields Institute Communications,2003,36(1):247-257.
    [19]
    Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96. doi: 10.1016/j.mbs.2004.01.003
    [20]
    Takeuchi Yasuhiro,MA Wan-biao,Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J].Nonlinear Analysis,2000,42(6):931-947. doi: 10.1016/S0362-546X(99)00138-8
    [21]
    MA Wan-biao,SONG Mei,Takeuchi Yasuhiro.Global stability of an SIR epidemic model with time delay[J].Applied Mathematics Letters,2004,17(10):1141-1145. doi: 10.1016/j.aml.2003.11.005
    [22]
    JIN Zhen,MA Zhi-en.The stability of an SIR epidemic model with time delays[J].Mathematical Biosciences and Engineering,2006,3(1):101-109.
    [23]
    Beretta Edoardo,Hara Tadayuki,MA Wang-bao,et al.Global asymptotic stability of an SIR epidemic model with distributed time delay[J].Nonlinear Analysis,2001,47(6):4107-4115. doi: 10.1016/S0362-546X(01)00528-4
    [24]
    Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore:World Scientic,1989.
    [25]
    LIU Xin-zhi,Teo Kok Lay,ZHANG Yi.Absolute stability of impulsive control systems with time delay[J].Nonlinear Analysis,2005,62(3):429-453. doi: 10.1016/j.na.2005.03.052
    [26]
    KUANG Yang.Delay Differential Equations with Applications in Population Dynamics[M].San Diego, CA:Academic Press,Inc.1993.
    [27]
    Cooke K L, Van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J].Journal of Mathematical Biology,1996,35(2):240-260. doi: 10.1007/s002850050051
    [28]
    WANG Wen-di.Global Behavior of an SEIRS epidemic model with time delays[J].Applied Mathematics Letters,2002,15(4):423-428. doi: 10.1016/S0893-9659(01)00153-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2750) PDF downloads(1543) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return