Volume 44 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
YAO Minghui, WANG Xingzhi, WU Qiliang, NIU Yan. RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054
Citation: YAO Minghui, WANG Xingzhi, WU Qiliang, NIU Yan. RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054

RBF Neural Network Based Prediction on Blade Surface Pressure Fields in Compressors

doi: 10.21656/1000-0887.440054
  • Received Date: 2023-03-02
  • Rev Recd Date: 2023-05-10
  • Publish Date: 2023-10-31
  • The airflow characteristics of the internal flow path of an aero-engine compressor are complex, and the vortex flow field around the blade is characterized by high pressure, high speed, rotation, and unsteadiness. Therefore, there is an urgent need to calculate and predict the aerodynamic characteristics of the complex flow field around the compressor blade efficiently and accurately. The computational fluid dynamics (CFD) method was used to generate the aerodynamic load distribution on the blade surface under different operating conditions for the study of the complex flow fields around aero-engine blades. The radial based function (RBF) neural network was applied to establish the pressure surface aerodynamic load prediction model, and the neural network modeling method was combined with the flow field calculation. The neural network method can learn and train the CFD-based data set to properly compensate the errors from the CFD, which provides a reference for the effective prediction of the complex flow fields around aero-engine compressor blades.
  • loading
  • [1]
    LI C F, SHE H X, TANG Q S, et al. The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features[J]. Applied Mathematical Modelling, 2019, 67: 557-572. doi: 10.1016/j.apm.2018.09.041
    [2]
    YANG J S, XIE J S, CHEN G G, et al. An efficient method for vibration equations with time varying coefficients and nonlinearities[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 1744-1763. doi: 10.1177/14613484211025151
    [3]
    ZHAO Y M, XIA Z H, SHI Y P, et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow[J]. Physics of Fluids, 2014, 26(9): 095103. doi: 10.1063/1.4895589
    [4]
    ZHAO Y M, YANG Y, CHEN S Y. Evolution of material surfaces in the temporal transition in channel flow[J]. Journal of Fluid Mechanics, 2016, 793: 840-876. doi: 10.1017/jfm.2016.152
    [5]
    BAI B, BAI G C, LI C. Application of multi-stage multi-objective multi-disciplinary agent model based on dynamic substructural method in mistuned blisk[J]. Aerospace Science and Technology, 2015, 46: 104-115. doi: 10.1016/j.ast.2015.06.030
    [6]
    王超, 王贵东, 白鹏. 飞行仿真气动力数据机器学习建模方法[J]. 空气动力学学报, 2019, 37(3): 488-497. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903016.htm

    WANG Chao, WANG Guidong, BAI Peng. Machine learning method for aerodynamic modeling based on flight simulation data[J]. Acta Aerodynamica Sinica, 2019, 37(3): 488-497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903016.htm
    [7]
    BALLA K, SEVILLA R, HASSAN O, et al. An application of neural networks to the prediction of aerodynamic coefficients of aerofoils and wings[J]. Applied Mathematical Modelling, 2021, 96: 456-479. doi: 10.1016/j.apm.2021.03.019
    [8]
    LOU J, ZHU W, WANG H, et al. Prediction of residual stress for machining aviation engine blade based on RBF neural network[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 361-370.
    [9]
    陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 52-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901004.htm

    CHEN Haixin, DENG Kaiwen, LI Runze. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 52-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901004.htm
    [10]
    赵翔, 茹东恒, 王鹏, 等. 基于NARX神经网络方法的汽轮机转子关键部位应力预测[J]. 应用数学和力学, 2021, 42(8): 771-784. doi: 10.21656/1000-0887.410372

    ZHAO Xiang, RU Dongheng, WANG Peng, et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784. (in Chinese) doi: 10.21656/1000-0887.410372
    [11]
    LINSE D J, STENGEL R F. Identification of aerodynamic coefficients using computational neural networks[J]. Journal of Guidance Control and Dynamics, 1993, 16(6): 1018-1025. doi: 10.2514/3.21122
    [12]
    BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1): 477-508. doi: 10.1146/annurev-fluid-010719-060214
    [13]
    张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201901002.htm

    ZHANG Tianjiao, QIAN Weiqi, ZHOU Yu, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201901002.htm
    [14]
    何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903014.htm

    HE Lei, QIAN Weiqi, WANG Qing, et al. Applications of machine learning for aerodynamic characteristic modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201903014.htm
    [15]
    FEI T, JI L C, YI W L. Performance characteristic modeling for 2D compressor cascades[J]. International Journal of Turbo and Jet Engines, 2019, 39(3): 367-382.
    [16]
    ZHAO Y, MENG Y, YU P, et al. Prediction of fluid force exerted on bluff body by neural network method[J]. Journal of Shanghai Jiaotong University (Science), 2020, 25(2): 186-192. doi: 10.1007/s12204-019-2140-0
    [17]
    PAZIREH S, DEFOE J. A new loss generation body force model for fan/compressor blade rows: application to uniform and non-uniform inflow in rotor 67[J]. Journal of Turbomachinery, 2022, 144(6): 061005. doi: 10.1115/1.4053231
    [18]
    REN L H, YE Z F, ZHAO Y P. A modeling method for aero-engine by combining stochastic gradient descent with support vector regression[J]. Aerospace Science and Technology, 2020, 99: 105775.
    [19]
    ZHANG M M, HAO S R, HOU A P. Study on the intelligent modeling of the blade aerodynamic force in compressors based on machine learning[J]. Mathematics, 2021, 9(5): 476.
    [20]
    LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177.
    [21]
    QIN S, WANG S Y, WANG L Y, et al. Multi-objective optimization of cascade blade profile based on reinforcement learning[J]. Applied Sciences-Basel, 2021, 11(1): 106.
    [22]
    QIN S, WANG S Y, SUN G, et al. New approach of inverse design of transonic compressor rotor blade via prescribed isentropic Mach distributions without modification of governing equations[J]. Proceedings of the Institution of Mechanical Engineers(Part G): Journal of Aerospace Engineering, 2022, 236(7): 1422-1438.
    [23]
    廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34(8): 1751-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201908013.htm

    LIAO Peng, YAO Leijiang, BAI Guodong, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8): 1751-1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201908013.htm
    [24]
    王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
    [25]
    杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9): 2251-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202309020.htm

    DU Zhou, XU Quanyong, SONG Zhenshou, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9): 2251-2260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202309020.htm
    [26]
    王金城, 齐进, 吴锤结. 不可压缩Navier-Stokes方程最优动力系统建模和分析[J]. 应用数学和力学, 2020, 41(1): 1-15. doi: 10.21656/1000-0887.400279

    WANG Jincheng, QI Jin, WU Chuijie. Analysis and modelling optimal dynamical systems of incompressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2020, 41(1): 1-15. (in Chinese) doi: 10.21656/1000-0887.400279
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (571) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return