Citation: | QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137 |
[1] |
石荣. Navier-Stokes方程组的最优控制问题[J]. 江汉大学学报(自然科学版), 2009,37(3): 20-24.(SHI Rong. Optimal control problems of Navier-Stokes equations[J].Journal of Jianghan University(Natural Sciences),2009,37(3): 20-24.(in Chinese))
|
[2] |
Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,1982,32(1/3): 199-259.
|
[3] |
ZHOU Tian-xiao, FENG Min-fu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Mathematics of Computation,1993,60(202): 531-543.
|
[4] |
Layton W. A connection between subgrid scale eddy viscosity and mixed methods[J].Applied Mathematics and Computation,2002,133(1): 147-157.
|
[5] |
FENG Min-fu, BAI Yan-hong, HE Yin-nian, QIN Yan-mei. A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations[J].Journal of Computational Mathematics,2011,29(4): 415-440.
|
[6] |
Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J].Calcolo,2001,38(4): 173-199.
|
[7] |
Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J].Mathematics of Computation,1989,52(186): 495-508.
|
[8] |
Bochev P B, Dohrman C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM Journal on Numerical Analysis,2006,44(1): 82-101.
|
[9] |
Burman E. Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem[J].Numerical Methods for Partial Differential Equations,2008,24(1): 127-143.
|
[10] |
覃燕梅, 冯民富, 罗鲲, 吴开腾. Navier-Stokes方程的局部投影稳定化方法[J]. 应用数学和力学, 2010,31(5): 618-630.(QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local projection stabilized finite element method for Navier-Stokes equations[J].Applied Mathematics and Mechanics,2010,31(5): 618-630.(in Chinese))
|
[11] |
Codina R. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[J].Applied Numerical Mathematics,2008,58(3): 264-283.
|
[12] |
LI Jian, HE Yin-nian. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J].Journal of Computational and Applied Mathematics,2008,214(1): 58-65.
|
[13] |
HE Yin-nian, LI Jian. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Applied Numerical Mathematics,2008,58(10): 1503-1514.
|
[14] |
LI Jian, HE Yin-nian, CHEN Zhang-xin. A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/4): 22-35.
|
[15] |
LI Jian, CHEN Zhang-xin. A new local stabilized nonconforming finite element method for the Stokes equations[J].Computing,2008,82(2): 157-170.
|
[16] |
JING Fei-fei, SU Jian, ZHANG Xiao-xu, LIU Xiao-min. Characteristic stabilized nonconforming finite element method for the unsteady incompressible Navier-Stokes equations[J].Chinese Journal of Engineering Mathematics,2014,31(5): 764-778.
|
[17] |
Abergel F, Temam R. On some control problems in fluid mechanics[J].Theoretical and Computational Fluid Dynamics,1990,1(6): 303-325.
|
[18] |
Gunzburger M, Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control[J].SIAM Journal on Numerical Analysis,2000,37(5): 1481-1512.
|
[19] |
WANG Geng-sheng. Optimal controls of 3-dimensional Navier-Stokes equations with state constraints[J].SIAM Journal on Control and Optimization,2002,41(2): 583-606.
|
[20] |
Gunzburger M D, Hou L, Svobodny T P. Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls[J].Mathematics of Computation,1991,57(195): 123-151.
|
[21] |
Wachsmuth D. Sufficient second-order optimality conditions for convex control constraints[J].Journal of Mathematical Analysis and Applications,2006,319(1): 228-247.
|
[22] |
CHEN Gang, FENG Min-fu. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations[J].Computational Optimization and Applications,2014,58(3): 679-705.
|
[23] |
Braack M. Optimal control in fluid mechanics by finite elements with symmetric stabilization[J].PAMM,2008,8(1): 10945-10946.
|
[24] |
Yilmaz F. Semi-discrete a priori error analysis for the optimal control of the unsteady Navier-Stokes equations with variational multiscale stabilization[J].Applied Mathematics and Computation,2016,276: 127-142.
|
[25] |
Heywood J G, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem—part IV: error estimates for second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1990,27(2): 353-384.
|
[26] |
Girault V, Raviart P A.Finite Element Approximation of the Navier-Stokes Equations [M].Lecture Notes in Mathematics,749. Berlin: Springer, 1974.
|
[27] |
HE Yin-nian. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4): 1263-1285.
|