XIE Hong-yan, LI Jie, HE Fang-yi. A Remark on Regularity for the Axisymmetric Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 276-283. doi: 10.21656/1000-0887.370192
Citation: XIE Hong-yan, LI Jie, HE Fang-yi. A Remark on Regularity for the Axisymmetric Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 276-283. doi: 10.21656/1000-0887.370192

A Remark on Regularity for the Axisymmetric Navier-Stokes Equations

doi: 10.21656/1000-0887.370192
Funds:  The National Natural Science Foundation of China(71102145)
  • Received Date: 2016-06-21
  • Rev Recd Date: 2016-10-16
  • Publish Date: 2017-03-15
  • A regularity criterion for the axisymmetric incompressible NavierStokes system was established.It is proved that, if local axisymmetric smooth solution u satisfies‖ωrLα1((0,T);Lβ1)+‖ωθ/r‖Lα2((0,T);Lβ2))<∞,where 2/α1+3/β1≤1+3/β1,2/α2+3/β2≤2 and β1≥3, β2> 3/2,this strong solution will keep its smoothness up to time T.
  • loading
  • [1]
    Ali A, Asghar S, Alisulami H H. Oscillatory flow of second grade fluid in cylindrical tube[J]. Applied Mathematics and Mechanics (English Edition),2013,34(9): 1097-1106.
    [2]
    Buske D, Bodmann B, Vilhena M T M B, et al. On the solution of the coupled advection-diffusion and Navier-Stokes equations[J]. American Journal of Environmental Engineering,2015,5(1A):1-8.
    [3]
    刘莹, 章德发, 毕勇强, 等. 主动脉弓及分支血管内非稳态血流分析[J]. 应用数学和力学, 2015,36(4): 432-439.(LIU Ying, ZHANG De-fa, BI Yong-qiang, et al. Analysis of unsteady blood flow in the human aortic bifurcation[J]. Applied Mathematics and Mechanics,2015,36(4): 432-439.(in Chinese))
    [4]
    Constantin P, Foias C. Navier-Stokes Equations (Chicago Lectures in Mathematics) [M]. Chicago: University of Chicago Press, 1988.
    [5]
    Fefferman C L. Existence and smoothness of the Navier-Stokes equation[M]// The Millennium Prize Problems . Cambridge: Clay Mathematics Institute, 2006: 57-67.
    [6]
    Majda A J, Bertozzi A L. Vorticity and Incompressible Flow (Cambridge Texts in Applied Mathematics) [M]. Cambridge: Cambridge University Press, 2002.
    [7]
    Leonardi S, Málek J, Necas J, et al. On axially symmetric flows in R3[J].Z Anal Anwendungen,1999,18(3): 639-649.
    [8]
    Ukhovskii M R, Yudovich V I. Axially symmetric flows of ideal and viscous fluids filling the whole space[J]. Prikl Mat Meh,1968,32(1): 59-69.
    [9]
    Chae D, Lee J. On the regularity of the axisymmetric solutions of the Navier-Stokes equations[J]. Mathematische Zeitschrift,2002,239(4): 645-671.
    [10]
    Kubica A, Pokorn M, Zajaczkowski W. Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations[J]. Mathematical Methods in the Applied Sciences,2012,35(3): 360-371.
    [11]
    Neustupa J, Pokorn M. Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component[J]. Mathematica Bohemica,2001,126(2): 469-481.
    [12]
    ZHOU Yong. On regularity criteria in terms of pressure for the Navier-Stokes equations in R3[J]. Proc Amer Math Soc,2006,134: 149-156.
    [13]
    JIA Xuan-ji, ZHOU Yong. Remarks on regularity criteria for the Navier-Stokes equations via one velocity component[J]. Nonlinear Analysis: Real World Applications,2014,15: 239-245.
    [14]
    ZHOU Yong. A new regularity criterion for weak solutions to the Navier-Stokes equations[J]. Journal de Mathématiques Pures et Appliquées,2005,84(11): 1496-1514.
    [15]
    ZHOU Yong, Pokorn M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component[J]. Nonlinearity,2010,23(5): 1097-1107.
    [16]
    ZHOU Yong. A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity[J]. Monatshefte für Mathematik,2005,144(3): 251-257.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1182) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return