Citation: | ZHAO Han, ZHAO Xiao-min, JIANG Jian-man. Study on Hamel’s Embedding Method via the Udwadia-Kalaba Theory[J]. Applied Mathematics and Mechanics, 2017, 38(6): 696-707. doi: 10.21656/1000-0887.370327 |
[1] |
Hamel G. Theoretische Mechanik [M]. Berlin: Springer, 1949.
|
[2] |
黄友钦, 林俊宏, 傅继阳, 等. 多重约束下空间桁架结构抗风优化[J]. 应用数学和力学, 2013,34(8): 824-835.(HUANG You-qin, LIN Jun-hong, FU Ji-yang, et al. Wind resistant optimization of spatial truss structures under multi-constraints[J]. Applied Mathematics and Mechanics,2013,34(8): 824-835.(in Chinese))
|
[3] |
Blajer W. Projective formulation of Maggi’s method for nonholonomic systems analysis[J]. Journal of Guidance Control Dynamics,2015,15(2): 522-525.
|
[4] |
CHEN Ye-hwa. Equations of motion of mechanical systems under servo constraints: the Maggi approach[J]. Mechatronics,2008,18(4): 208-217.
|
[5] |
乔永芬, 赵淑红. Poincaré-Chetaev变量下变质量非完整动力学系统的运动方程[J]. 物理学报, 2001,50(5): 805-810.(QIAO Yong-fen, ZHAO Shu-hong. Equations of motion of variable mass nonholonomic dynamical system in Poincaré-Chetaev variables[J]. Acta Physica Sinica,2001,50(5): 805-810.(in Chinese))
|
[6] |
Brogliato B. Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction[J]. Multibody System Dynamics,2013,32(2): 175-216.
|
[7] |
Papastavridis J G. Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians [M]. New York: Oxford University Press, 2002.
|
[8] |
Udwadia F E, Wanichanon T. Hamel’s paradox and the foundations of analytical dynamics[J]. Applied Mathematics and Computation,2010,217(3): 1253-1265.
|
[9] |
Rosenberg R M. Analytical Dynamics of Discrete Systems [M]. New York: Plenum, 1977.
|
[10] |
CHEN Ye-hwa. Hamel paradox and Rosenberg conjecture in analytical dynamics[J]. Journal of Applied Mechanics, 2013,80(4): 041001-1-041001-8.
|
[11] |
CHEN Ye-hwa. Mechanical systems under servo constraints: the Lagrange’s approach[J]. Mechatronics,2005,15(3): 317-337.
|
[12] |
宋端. 一阶Lagrange系统平衡稳定性对参数的依赖关系[J]. 应用数学和力学, 2014,35(6): 692-696.(SONG Duan. Dependence of equilibrium stability of first order Lagrange systems on parameters[J]. Applied Mathematics and Mechanics,2014,35(6): 692-696.(in Chinese))
|
[13] |
Kalaba R E, Udwadia F E. Lagrangian mechanics, Gauss’s principle, quadratic programming, and generalized inverses: new equations for nonholonomically constrained discrete mechanical systems[J]. Quarterly of Applied Mathematics,1994,52(2): 229-241.
|
[14] |
Udwadia F E, Kalaba R E. An alternate proof for the equation of motion for constrained mechanical systems[J]. Applied Mathematics and Computation,1995,70(2): 339-342.
|
[15] |
Udwadia F E, Kalaba R E, Eun H C. Equations of motion for constrained mechanical systems and the extended d’Alembert’s principle[J]. Quarterly of Applied Mathematics,1997,56(2): 321-331.
|