Citation: | XU Wei-zheng, KONG Xiang-shao, WU Wei-guo. An Improved rd-Order WENO Scheme Based on Mapping Functions and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345 |
[1] |
LIU Xu-dong, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
|
[2] |
Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics,1987,71(2): 231-303.
|
[3] |
JIANG Guang-shan, SHU Chi-wang. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
|
[4] |
Henrick A K, Aslam T D, Powers J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics,2005,207(2): 542-567.
|
[5] |
FENG Hui, HU Fu-xing, WANG Rong. A new mapped weighted essentially non-oscillatory scheme[J]. Journal of Scientific Computing,2012,51(2): 449-473.
|
[6] |
FENG Hui, HUANG Cong, WANG Rong. An improved mapped weighted essentially non-oscillatory scheme[J]. Applied Mathematics & Computation,2014,232(6): 453-468.
|
[7] |
Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics,2008,227(6): 3191-3211.
|
[8] |
Acker F, Borges R B D R, Costa B. An improved WENO-Z scheme[J]. Journal of Computational Physics,2016,313: 726-753.
|
[9] |
Zhao S, Lardjane N, Fedioun I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J]. Computers & Fluids,2014,95(3): 74-87.
|
[10] |
Yamaleev N K, Carpenter M H. Third-order energy stable WENO scheme[J]. Journal of Computational Physics,2009,228(8): 3025-3047.
|
[11] |
WU Xiao-shuai, LIANG Jian-han, ZHAO Yu-xin. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids,2016,81: 451-459.
|
[12] |
WU Xiao-shuai, ZHAO Yu-xin. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids,2015,78(3): 162-187.
|
[13] |
Don W S, Borges R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J]. Journal of Computational Physics,2013,250(4): 347-372.
|
[14] |
SHU Chi-wang, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics,1988,77(2): 439-471.
|
[15] |
Rusanov V V. Calculation of interaction of non-steady shock waves with obstacles[J].Ussr Computational Mathematics & Mathematical Physics,1962.
|
[16] |
Sod G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics,1978,27(1): 1-31.
|
[17] |
Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
|
[18] |
SHI Jing, ZHANG Yong-tao, SHU Chi-wang. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics,2003,186(2): 690-696.
|
[19] |
Quirk J J, Karni S. On the dynamics of a shock-bubble interaction[J]. Journal of Fluid Mechanics,1996,318(2): 129-163.
|