TIE Jun, YE Hongling, PENG Xirong. An ICM Method for Topology Optimization Based on Polished Inverse Mapping[J]. Applied Mathematics and Mechanics, 2018, 39(4): 424-441. doi: 10.21656/1000-0887.380052
Citation: TIE Jun, YE Hongling, PENG Xirong. An ICM Method for Topology Optimization Based on Polished Inverse Mapping[J]. Applied Mathematics and Mechanics, 2018, 39(4): 424-441. doi: 10.21656/1000-0887.380052

An ICM Method for Topology Optimization Based on Polished Inverse Mapping

doi: 10.21656/1000-0887.380052
Funds:  The National Natural Science Foundation of China(11672103)
  • Received Date: 2017-03-08
  • Rev Recd Date: 2017-05-31
  • Publish Date: 2018-04-15
  • The polish mapping and the filter mapping in the ICM (independent continuous mapping) method for topology optimization were extended, and the composite function was used to coordinate the filter function. Due to the superposed discrete effects of composite functions, the composite function of the power function and the sine function was introduced to identify the presence and absence of the elements. The ICM method was used to establish the topology optimization model for the continuum structure with the minimum weight under the displacement constraints, which was solved with the exact dual algorithm of the quadratic programming. Then based on the dynamic inversion strategy, the rational inversion function was constructed with the optimal threshold to obtain the most strict discrete solution. Moreover, the 2-stage ‘discrete-continuous’ and ‘continuous-discrete’ solution method was established for topology optimization. Moreover, a calculator program was developed and compiled based on the MATLAB according to this new method. The results show that the proposed method has the advantages of higher computational efficiency, less optimal gray values and less structural weight after inversion, and gives a more reasonable structural topology.
  • loading
  • [1]
    隋允康, 铁军. 结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化[J]. 工程力学, 2010,12(S2): 124-134.(SUI Yunkang, TIE Jun. The ICM explicitation approach to the structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function[J]. Engineering Mechanics,2010,12(S2): 124-134.(in Chinese)))
    [2]
    TIE Jun, SUI Yunkang. Topology optimization using parabolic aggregation function with independent-continuous-mapping method[J]. Mathematical Problems in Engineering,2013,2013(3): 1-18.
    [3]
    BENDSE M P, KIKUCHI N. Generating optimal topologies in structure design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2): 197-224.
    [4]
    BENDSE M P, SIGMUND O.Topology Optimization: Theory, Methods and Applications [M]. Berlin: Springer, 2003.
    [5]
    隋允康. 建模 变换 优化——结构综合方法新进展[M]. 大连: 大连理工大学出版社, 1996.(SUI Yunkang. Modelling, Transformation and Optimization—New Developments of Structural Synthesis Method [M]. Dalian: Dalian University of Technology Press, 1996.(in Chinese))
    [6]
    隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京: 科学出版社, 2013.(SUI Yunkang, YE Hongling. Continuum Topology Optimization Methods ICM [M]. Beijing: Science Press, 2013.(in Chinese))
    [7]
    XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computation Structure,1993,49(5): 885-896.
    [8]
    郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法[J]. 力学学报, 2004,36(5): 520-526.(GUO Xu, ZHAO Kang. A new topology description function based approach for structural topology optimization[J]. Acta Mechanics Sinica,2004,36(5): 520-526.(in Chinese))
    [9]
    隋允康, 彭细荣. 连续体结构考虑离散性目标的ICM方法[J]. 计算力学学报, 2006,23(2): 163-168.(SUI Yunkang, PENG Xirong. ICM method with objective transformed by variable discrete condition for continuum structure[J]. Chinese Journal of Computational Mechanics,2006,23(2): 163-168.(in Chinese))
    [10]
    FUCHS M B, JINY S, PELEG N. The SRV constraint for 0/1 topological design[J]. Structural and Multidisciplinary Optimization,2005,30(4): 320-326.
    [11]
    周向阳, 陈立平, 黄正东. 用SIMP-SRV方法进行柔性机构拓扑优化设计[J]. 中国机械工程, 2008,19(6): 631-635.(ZHOU Xiangyang, CHEN Liping, HUANG Zhengdong. Topology optimization design of compliant mechanism with the SIMP-SRV method[J]. China Mechanical Engineering,2008,19(6): 631-635.(in Chinese))
    [12]
    GUEST J K, PRVOST J H, BELYTSCHKO T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J]. International Journal for Numerical Methods in Engineering,2004,61(2): 238-254.
    [13]
    SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4/5): 401-424.
    [14]
    XU Shengli, CAI Yuanwu, CHENG Gengdong. Volume preserving nonlinear density filter based on Heaviside functions[J]. Structural and Multidisciplinary Optimization,2010,41(4): 495-505.
    [15]
    昌俊康, 段宝岩. 连续体结构拓扑优化的一种改进变密度法及其应用[J]. 计算力学学报, 2009,26(2): 188-192. (CHANG Junkang, DUAN Baoyan. An improved variable density method and application for topology optimization of continuum structures[J]. Chinese Journal of Computational Mechanics,2009,26(2): 188-192.(in Chinese))
    [16]
    龙凯, 赵红伟. 抑制灰度单元的改进优化准则法[J]. 计算机辅助设计与图形学学报, 2010,22(12): 2197-2201.(LONG Kai, ZHAO Hongwei. Modified optimality criterion method for gray elements suppression[J]. Journal of Computer-Aided Design & Computer Graphics,2010,22(12): 2197-2201.(in Chinese))
    [17]
    罗震, 陈立平, 张云清, 等. 多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术[J]. 固体力学学报, 2005,26(1): 29-36.(LUO Zhen, CHEN Liping, ZHANG Yunqing, et al. Multi-stiffness topological optimization for continuum structures with multiple loading cases and a duplicate sensitivity filtering method[J]. Acta Mechanica Solida Sinica,2005,26(1): 29-36.(in Chinese))
    [18]
    张新超, 荣见华, 陈晨晨, 等. 基于Heaviside密度和灵敏度过滤的多位移约束结构拓扑优化[J]. 长沙理工大学学报(自然科学版), 2012,9(2): 57-62.(ZHANG Xinchao, RONG Jianhua, CHEN Chenchen, et al. Structural topological optimization with multiple displacement constraints based on Heaviside density and sensitivity filtering[J]. Journal of Changsha University of Science and Technology(Natural Science),2012,9(2): 57-62.(in Chinese))
    [19]
    李家春, 李玉刚, 韩锦锦. 双向插值模式连续体结构拓扑优化设计[J]. 机械科学与技术, 2016,35(2): 222-226.(LI Jiachun, LI Yugang, HAN Jinjin. Research on continuum structure topology optimization based on bi-directional interpolation model[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2): 222-226.(in Chinese))
    [20]
    张志飞, 徐伟, 徐中明, 等. 抑制拓扑优化中灰度单元的双重SIMP方法[J]. 农业机械学报, 2015,46(11): 405-410.(ZHANG Zhifei, XU Wei, XU Zhongming, et al. Double-SIMP method for gray-scale element suppression in topology optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(11): 405-410.(in Chinese))
    [21]
    隋允康, 宣东海, 叶红玲, 等. 阶跃函数高精度逼近的结构拓扑优化方法[J]. 计算力学学报, 2010,27(6):959-967.(SUI Yunkang, XUAN Donghai, YE Hongling, et al. Structural topology optimization method using high accuracy approximation of the step function[J].Chinese Journal of Computational Mechanics,2010,27(6): 959-967.(in Chinese))
    [22]
    隋允康, 叶红玲, 刘建信, 等. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008,25(S2): 7-19.(SUI Yunkang, YE Hongling, LIU Jianxin, et al. A structural topological optimization method based on exploring conceptual root[J]. Engineering Mechanics,2008,25(S2): 7-19. (in Chinese))
    [23]
    尚珍, 隋允康. 结构拓扑优化中不同过滤函数间关系的探讨[J]. 力学与实践, 2011,33(2): 52-57.(SHANG Zhen, SUI Yunkang.Relationship between different filter functions in structural topological optimization[J]. Mechanics in Engineering,2011,33(2): 52-57.(in Chinese))
    [24]
    隋允康, 彭细荣. 结构拓扑优化ICM方法的改善[J]. 力学学报, 2005,37(2): 190-198.(SUI Yunkang, PENG Xirong. The improvement for the ICM method of structural topology optimization[J]. Acta Mechanics Sinica,2005,37(2): 190-198.(in Chinese))
    [25]
    隋允康, 杨德庆, 王备. 多工况应力和位移约束下连续体结构拓扑优化[J]. 力学学报, 2000,32(2): 171-179.(SUI Yunkang, YANG Deqing, WANG Bei. Topological optimization of continuum structure with stress and displacement constraints under multiple loading cases[J]. Acta Mechanics Sinica,2000,32(2): 171-179.(in Chinese))
    [26]
    BELYTSCHKO T, XIAO S P, PARIMI C. Topology optimization with implicit functions and regularization[J]. International Journal for Numerical Methods in Engineering,2003,57(8): 1177-1196.
    [27]
    宣东海. 连续体结构拓扑优化高精度逼近的ICM方法[D]. 博士学位论文. 北京: 北京工业大学, 2010.(XUAN Donghai. ICM method of high accuracy approximation for topology optimization of continuum structures[D]. PhD Thesis. Beijing: Beijing University of Technology, 2010.(in Chinese))
    [28]
    杨德庆, 隋允康, 刘正兴, 等. 应力和位移约束下连续体结构拓扑优化[J]. 应用数学和力学, 2000,21(1): 17-24.(YANG Deqing, SUI Yunkang, LIU Zhengxing, et al. Topology optimization design of continuum structures under stress and displacement constraints [J]. Applied Mathematics and Mechanics,2000,21(1): 17-24.(in Chinese))
    [29]
    石连栓, 孙焕纯, 冯恩民. 具有动应力和动位移约束的离散变量结构拓扑优化设计方法[J]. 应用数学和力学, 2001,22(7): 695-700.(SHI Liansuan, SUN Huancun, FENG Enmin. A method for topological optimization of structures with discrete variables under dynamic stress and displacement constraints[J]. Applied Mathematics and Mechanics,2000,22(7): 695-700.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1265) PDF downloads(507) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return