Citation: | TIE Jun, YE Hongling, PENG Xirong. An ICM Method for Topology Optimization Based on Polished Inverse Mapping[J]. Applied Mathematics and Mechanics, 2018, 39(4): 424-441. doi: 10.21656/1000-0887.380052 |
[1] |
隋允康, 铁军. 结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化[J]. 工程力学, 2010,12(S2): 124-134.(SUI Yunkang, TIE Jun. The ICM explicitation approach to the structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function[J]. Engineering Mechanics,2010,12(S2): 124-134.(in Chinese)))
|
[2] |
TIE Jun, SUI Yunkang. Topology optimization using parabolic aggregation function with independent-continuous-mapping method[J]. Mathematical Problems in Engineering,2013,2013(3): 1-18.
|
[3] |
BENDSE M P, KIKUCHI N. Generating optimal topologies in structure design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2): 197-224.
|
[4] |
BENDSE M P, SIGMUND O.Topology Optimization: Theory, Methods and Applications [M]. Berlin: Springer, 2003.
|
[5] |
隋允康. 建模 变换 优化——结构综合方法新进展[M]. 大连: 大连理工大学出版社, 1996.(SUI Yunkang. Modelling, Transformation and Optimization—New Developments of Structural Synthesis Method [M]. Dalian: Dalian University of Technology Press, 1996.(in Chinese))
|
[6] |
隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京: 科学出版社, 2013.(SUI Yunkang, YE Hongling. Continuum Topology Optimization Methods ICM [M]. Beijing: Science Press, 2013.(in Chinese))
|
[7] |
XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computation Structure,1993,49(5): 885-896.
|
[8] |
郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法[J]. 力学学报, 2004,36(5): 520-526.(GUO Xu, ZHAO Kang. A new topology description function based approach for structural topology optimization[J]. Acta Mechanics Sinica,2004,36(5): 520-526.(in Chinese))
|
[9] |
隋允康, 彭细荣. 连续体结构考虑离散性目标的ICM方法[J]. 计算力学学报, 2006,23(2): 163-168.(SUI Yunkang, PENG Xirong. ICM method with objective transformed by variable discrete condition for continuum structure[J]. Chinese Journal of Computational Mechanics,2006,23(2): 163-168.(in Chinese))
|
[10] |
FUCHS M B, JINY S, PELEG N. The SRV constraint for 0/1 topological design[J]. Structural and Multidisciplinary Optimization,2005,30(4): 320-326.
|
[11] |
周向阳, 陈立平, 黄正东. 用SIMP-SRV方法进行柔性机构拓扑优化设计[J]. 中国机械工程, 2008,19(6): 631-635.(ZHOU Xiangyang, CHEN Liping, HUANG Zhengdong. Topology optimization design of compliant mechanism with the SIMP-SRV method[J]. China Mechanical Engineering,2008,19(6): 631-635.(in Chinese))
|
[12] |
GUEST J K, PRVOST J H, BELYTSCHKO T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J]. International Journal for Numerical Methods in Engineering,2004,61(2): 238-254.
|
[13] |
SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4/5): 401-424.
|
[14] |
XU Shengli, CAI Yuanwu, CHENG Gengdong. Volume preserving nonlinear density filter based on Heaviside functions[J]. Structural and Multidisciplinary Optimization,2010,41(4): 495-505.
|
[15] |
昌俊康, 段宝岩. 连续体结构拓扑优化的一种改进变密度法及其应用[J]. 计算力学学报, 2009,26(2): 188-192. (CHANG Junkang, DUAN Baoyan. An improved variable density method and application for topology optimization of continuum structures[J]. Chinese Journal of Computational Mechanics,2009,26(2): 188-192.(in Chinese))
|
[16] |
龙凯, 赵红伟. 抑制灰度单元的改进优化准则法[J]. 计算机辅助设计与图形学学报, 2010,22(12): 2197-2201.(LONG Kai, ZHAO Hongwei. Modified optimality criterion method for gray elements suppression[J]. Journal of Computer-Aided Design & Computer Graphics,2010,22(12): 2197-2201.(in Chinese))
|
[17] |
罗震, 陈立平, 张云清, 等. 多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术[J]. 固体力学学报, 2005,26(1): 29-36.(LUO Zhen, CHEN Liping, ZHANG Yunqing, et al. Multi-stiffness topological optimization for continuum structures with multiple loading cases and a duplicate sensitivity filtering method[J]. Acta Mechanica Solida Sinica,2005,26(1): 29-36.(in Chinese))
|
[18] |
张新超, 荣见华, 陈晨晨, 等. 基于Heaviside密度和灵敏度过滤的多位移约束结构拓扑优化[J]. 长沙理工大学学报(自然科学版), 2012,9(2): 57-62.(ZHANG Xinchao, RONG Jianhua, CHEN Chenchen, et al. Structural topological optimization with multiple displacement constraints based on Heaviside density and sensitivity filtering[J]. Journal of Changsha University of Science and Technology(Natural Science),2012,9(2): 57-62.(in Chinese))
|
[19] |
李家春, 李玉刚, 韩锦锦. 双向插值模式连续体结构拓扑优化设计[J]. 机械科学与技术, 2016,35(2): 222-226.(LI Jiachun, LI Yugang, HAN Jinjin. Research on continuum structure topology optimization based on bi-directional interpolation model[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2): 222-226.(in Chinese))
|
[20] |
张志飞, 徐伟, 徐中明, 等. 抑制拓扑优化中灰度单元的双重SIMP方法[J]. 农业机械学报, 2015,46(11): 405-410.(ZHANG Zhifei, XU Wei, XU Zhongming, et al. Double-SIMP method for gray-scale element suppression in topology optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(11): 405-410.(in Chinese))
|
[21] |
隋允康, 宣东海, 叶红玲, 等. 阶跃函数高精度逼近的结构拓扑优化方法[J]. 计算力学学报, 2010,27(6):959-967.(SUI Yunkang, XUAN Donghai, YE Hongling, et al. Structural topology optimization method using high accuracy approximation of the step function[J].Chinese Journal of Computational Mechanics,2010,27(6): 959-967.(in Chinese))
|
[22] |
隋允康, 叶红玲, 刘建信, 等. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008,25(S2): 7-19.(SUI Yunkang, YE Hongling, LIU Jianxin, et al. A structural topological optimization method based on exploring conceptual root[J]. Engineering Mechanics,2008,25(S2): 7-19. (in Chinese))
|
[23] |
尚珍, 隋允康. 结构拓扑优化中不同过滤函数间关系的探讨[J]. 力学与实践, 2011,33(2): 52-57.(SHANG Zhen, SUI Yunkang.Relationship between different filter functions in structural topological optimization[J]. Mechanics in Engineering,2011,33(2): 52-57.(in Chinese))
|
[24] |
隋允康, 彭细荣. 结构拓扑优化ICM方法的改善[J]. 力学学报, 2005,37(2): 190-198.(SUI Yunkang, PENG Xirong. The improvement for the ICM method of structural topology optimization[J]. Acta Mechanics Sinica,2005,37(2): 190-198.(in Chinese))
|
[25] |
隋允康, 杨德庆, 王备. 多工况应力和位移约束下连续体结构拓扑优化[J]. 力学学报, 2000,32(2): 171-179.(SUI Yunkang, YANG Deqing, WANG Bei. Topological optimization of continuum structure with stress and displacement constraints under multiple loading cases[J]. Acta Mechanics Sinica,2000,32(2): 171-179.(in Chinese))
|
[26] |
BELYTSCHKO T, XIAO S P, PARIMI C. Topology optimization with implicit functions and regularization[J]. International Journal for Numerical Methods in Engineering,2003,57(8): 1177-1196.
|
[27] |
宣东海. 连续体结构拓扑优化高精度逼近的ICM方法[D]. 博士学位论文. 北京: 北京工业大学, 2010.(XUAN Donghai. ICM method of high accuracy approximation for topology optimization of continuum structures[D]. PhD Thesis. Beijing: Beijing University of Technology, 2010.(in Chinese))
|
[28] |
杨德庆, 隋允康, 刘正兴, 等. 应力和位移约束下连续体结构拓扑优化[J]. 应用数学和力学, 2000,21(1): 17-24.(YANG Deqing, SUI Yunkang, LIU Zhengxing, et al. Topology optimization design of continuum structures under stress and displacement constraints [J]. Applied Mathematics and Mechanics,2000,21(1): 17-24.(in Chinese))
|
[29] |
石连栓, 孙焕纯, 冯恩民. 具有动应力和动位移约束的离散变量结构拓扑优化设计方法[J]. 应用数学和力学, 2001,22(7): 695-700.(SHI Liansuan, SUN Huancun, FENG Enmin. A method for topological optimization of structures with discrete variables under dynamic stress and displacement constraints[J]. Applied Mathematics and Mechanics,2000,22(7): 695-700.(in Chinese))
|