JU Haiyan, FU Mingfu, XU Bin. Vibration Characteristics Analysis of Periodic Cylindrical Shells-Based on the Transfer Matrix Method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 278-285. doi: 10.21656/1000-0887.380090
Citation: JU Haiyan, FU Mingfu, XU Bin. Vibration Characteristics Analysis of Periodic Cylindrical Shells-Based on the Transfer Matrix Method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 278-285. doi: 10.21656/1000-0887.380090

Vibration Characteristics Analysis of Periodic Cylindrical Shells-Based on the Transfer Matrix Method

doi: 10.21656/1000-0887.380090
Funds:  The National Natural Science Foundation of China(51269021;51569016)
  • Received Date: 2017-04-10
  • Rev Recd Date: 2018-01-15
  • Publish Date: 2018-03-15
  • Based on the phononic crystal theory and the Love shell theory, the radial axisymmetric vibration equations for cylindrical shells were established. The dynamic stiffness matrix of each cell in the periodic cylindrical shell was obtained, and the transfer matrix between adjacent cells was derived with the transfer matrix method. The effects of the elastic modulus and geometric sizes on the wave propagation characteristics were analyzed according to the numerical examples. Numerical results show that there exist band gaps and pass gaps during the process of wave propagation in periodic cylindrical shells; the change of the length ratio has a significant effect on the amplitude, the width and the number of the band gaps. Therefore, it is possible to regulate the wave propagation characteristics of the structure through adjustment of the structural dimensions, which provides a new way for the design and vibration control of the structure.
  • loading
  • [1]
    BAZ A. Active control of periodic structures[J]. Journal of Vibration and Acoustics,2001,123(4): 472-479.
    [2]
    陈正翔, 江松青, 张维衡. 圆柱壳中结构振动波的传播特性[J]. 振动工程学报, 1998,11(4): 450-456.(CHEN Zhengxiang, JIANG Songqing, ZHANG Weiheng. Dispersion characteristics of structure vibration waves in cylindrical shells[J]. Journal of Vibration Engineering,1998,11(4): 450-456.(in Chinese))
    [3]
    段海洋. 薄壁圆柱壳振动特性的研究[D]. 硕士学位论文. 沈阳: 东北大学, 2012.(DUAN Haiyang. Analysis of dynamic characteristics of thin circular cylindrical shells[D]. Master Thesis. Shenyang: Northeastern University, 2012.(in Chinese))
    [4]
    徐慕冰, 张小铭, 张维衡. 充液圆柱壳的波传播和功率流特性研究[J]. 振动工程学报, 1997,10(2): 230-235.(XU Mubing, ZHANG Xiaoming, ZHANG Weiheng. Characteristics of wave propagation and vibrational power flow in a fluid-filled cylindrical shell[J]. Journal of Vibration Engineering,1997,10(2): 230-235.(in Chinese))
    [5]
    YAN J, LI F C, LI T Y. Vibrational power flow analysis of a submerged viscoelastic cylindrical shell with wave propagation approach[J]. Journal of Sound and Vibration,2007,303(1/2): 264-276.
    [6]
    YAN J, LI T Y, LIU J X. Input power flow in a submerged infinite cylindrical shell with doubly periodic supports[J]. Applied Acoustics,2008,69(8): 681-690.
    [7]
    龚良贵, 李情. 流-固冲击载荷作用下圆柱薄壳的动力屈曲研究[J]. 南昌大学学报, 2010,32(2): 158-162.(GONG Lianggui, LI qing. Study on dynamic buckling of cylindrical shells under fluid-solid impact loading[J]. Journal of Nanchang University (Engineering & Technology),2010,32(2): 158-162.(in Chinese))
    [8]
    石焕文, 杨富社, 盛美萍, 等. 加环筋轴对称壳体振动声辐射特性[J]. 长安大学学报(自然科学版), 2008,28(6): 100-105.(SHI Huanwen, YANG Fushe, SHENG Meiping, et al. Characteristics of vibration and sound field of axisymmetric shell with stiffening rings[J]. Journal of Chang’an University (Natural Science Edition),2008,28(6): 100-105.(in Chinese))
    [9]
    沙哈 A G, 曼穆德 T, 那姆 M N, 等. 指数型体积分数功能梯度材料的薄壁圆柱壳振动[J]. 应用数学和力学, 2009,30(5): 567-573.(SHAH A G, MAHMOOD T, NAEEM M N, et al. Vibrations of FGM thin cylindrical shells with exponential volume fraction law[J]. Applied Mathematics and Mechanics,2009,30(5): 567-573.(in Chinese))
    [10]
    李文达, 杜敬涛, 杨铁军, 等. 弹性边界约束旋转功能梯度圆柱壳结构自由振动行波特性分析[J]. 应用数学和力学, 2015,36(7): 710-724.(LI Wenda, DU Jingtao, YANG Tiejun, et al. Traveling wave mode characteristics of rotating functional gradient material cylindrical shell structures with elastic boundary constraints[J]. Applied Mathematics and Mechanics, 2015,36(7): 710-724.(in Chinese))
    [11]
    RUZZENE M, BAZ A. Dynamic stability of periodic shells with moving loads[J]. Journal of Sound and Vibration,2006,296(4/5): 830-844.
    [12]
    丁兰, 朱宏平, 吴巧云. 弹性地基上随机失谐周期加固管的波动局部和特性研究[J]. 工程力学, 2015,32(2): 45-52.(DING Lan, ZHU Hongping, WU Qiaoyun. Study on wave localization in randomly disordered periodically stiffened pipes on elastic pipes on elastic foundations[J]. Engineering Mechanics,2015,32(2): 45-52.(in Chinese))
    [13]
    尹涛, 丁兰, 朱宏平. 失谐周期盾构隧道结构的弯曲波动局部化[J]. 振动工程学报, 2015,28(2): 262-268.(YIN Tao, DING Lan, ZHU Hongping. Flexural wave localization in disordered periodic jointed tunnel[J]. Journal of Vibration Engineering,2015,28(2): 262-268.(in Chiense))
    [14]
    曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989: 290.(CAO Zhiyuan. Vibration Theory of Plates and Shells[M]. Beijng: China Railway Publishing House, 1989: 290.(in Chinese))
    [15]
    LOVE A E H. A Treatise on the Mathematical Theory of Elasticity [M]. 4th ed. Cambridge: Cambridge University Press, 1952.
    [16]
    KITTEL C. Introduction to Solid State Physics [M]. New York: Wiley, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1222) PDF downloads(572) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return