YANG Li, LI Jun. Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106
Citation: YANG Li, LI Jun. Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106

Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces

doi: 10.21656/1000-0887.380106
Funds:  The National Natural Science Foundation of China(11371015)
  • Received Date: 2017-04-20
  • Rev Recd Date: 2017-06-14
  • Publish Date: 2017-09-15
  • In infinitedimensional Hilbert spaces, the modified Halpern iteration and viscosity approximation methods for solving the split feasibility problems (SFPs) were proposed. When the parameters satisfy certain conditions, it is proved that the sequences generated with the proposed algorithms converge strongly to a solution to the split feasibility problem. The main findings improve and extend some recent results by Deepho and Kumam.
  • loading
  • [1]
    Censor Y, Bortfeld T, Martin B, et al. A unified approach for inversion problems in intensity-modulated radiation therapy[J]. Physics in Medicine and Biology,2006,51(10): 2253-2365.
    [2]
    Censor Y, Elfving T, Kopf N, et al. The multiple-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems,2005,21(6): 2071-2084.
    [3]
    Censor Y, Motiva A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. Journal of Mathematical Analysis and Applications,2007,327(2): 1244-1256.
    [4]
    Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space[J]. Numerical Algorithms,1994,8(2): 221-239.
    [5]
    XU Hong-kun. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces[J]. Inverse Problems,2010,26(10): 1-17.
    [6]
    TANG Yu-chao, LIU Li-wei. Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces[J]. Journal of Inequalities and Applications,2016(1): 2-14. doi: 10.1186/s13660-016-1228-4.
    [7]
    XU Hong-kun. A variable Krasnosel’skiǐ-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems,2006,22(6): 2021-2034.
    [8]
    YANG Qing-zhi. The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems,2004,20(4): 1261-1266.
    [9]
    YANG Qing-zhi, ZHAO Jin-ling. Generalized KM-theorems and their applications[J]. Inverse Problems,2006,22(3): 833-844.
    [10]
    Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems,2002,18(2): 441-453.
    [11]
    XU Hong-kun. Viscosity approximation methods for nonexpansive mappings[J]. Journal of Mathematical Analysis and Applications,2004,298(1): 279-291.
    [12]
    Deepho J, Kumam P. A viscosity approximation method for the split feasibility problems[J]. Transactions on Engineering Technologies,2014,2(6): 69-77.
    [13]
    WANG Feng-hui, XU Hong-kun. Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem[J]. Journal of Inequalities and Applications,2010(1): 1-13. doi: 10.1155/2010/102085.
    [14]
    XU Hong-kun. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society,2002,66(1): 240-256.
    [15]
    Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [M]. Cambridge: Cambridge University Press, 1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1053) PDF downloads(466) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return