Citation: | RAO Ling. Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems[J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109 |
[1] |
张石生. 变分不等式及其相关问题[M]. 重庆: 重庆出版社, 2008.(ZHANG Shisheng. Variational Inequalities and the Relevant Problem s[M]. Chongqing: Chongqing Press, 2008.(in Chinese))
|
[2] |
DUVAUT G, LIONS J L. Inequalities in Mechanics and Physics [M]. Berlin, Heidelberg: Springer-Verlag, 1976.
|
[3] |
KINDERLENHRER D, STANPACCHIA G. An Introduction to Variational Inequalities and Their Applications [M]. New York: Academic Press, 1980.
|
[4] |
GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems [M]. New York: Springer Verlag, 1984.
|
[5] |
CHAN Hsinfang, FAN Chiaming, KUO Chiasen. Generalized finite difference method for solving two-dimensional non-linear obstacle problems[J]. Engineering Analysis With Boundary Elements,2013,37(9): 1189-1196.
|
[6] |
GLOWINSKI R, KUZNETSOV Y A, PAN T W. A penalty/Newton/conjugate gradient method for the solution of obstacle problems[J]. Comptes Rendus Mathematique,2003,336(5): 435-440.
|
[7] |
郑铁生, 李立, 许庆余. 一类椭圆型变分不等式离散问题的迭代算法[J]. 应用数学和力学, 1995,16(4): 329-335.(ZHENG Tiesheng, LI Li, XU Qingyu. An iterative method for the discrete problems of a class of elliptical variational inequalities[J]. Applied Mathematics and Mechanics,1995,16(4): 329-335.(in Chinese))
|
[8] |
刘丹阳, 蒋娅. 混合向量变分不等式标量化及间隙函数误差界[J]. 应用数学和力学, 2017,38(6): 715-726.(LIU Danyang, JIANG Ya. Scalarization of mixed vector variational inequalities and error bounds of gap functions[J]. Applied Mathematics and Mechanics,2017, 3〖STHZ〗8(6): 715-726.(in Chinese))
|
[9] |
郑宏, 刘德富, 李焯芬, 等. 一个新的有自由面渗流问题的变分不等式提法[J]. 应用数学和力学, 2005,26(3): 363-371.(ZHENG Hong, LIU Defu, LEE C F, et al. New variational inequality formulation for seepage problems with free surfaces[J]. Applied Mathematics and Mechanics,2005,26(3): 363-371.(in Chinese))
|
[10] |
KORMAN P, LEUNG A W, STOJANOVIC S. Monotone iterations for nonlinear obstacle problem[J]. Journal of the Australian Mathematical Society,1990,31(3): 259-276.
|
[11] |
PAO C V. Accelerated monotone iterations for numerical solutions of nonlinear elliptic boundary value problems[J]. Computers & Mathematics With Applications,2003,46(10/11): 1535-1544.
|
[12] |
HE J W. Fictitious domain methods in fluid mechanics applications to unsteady potential flows over moving bodies[D]. PhD Thesis. Paris: University Paris 6,1994.
|
[13] |
GLOWINSKI R, PAN T W, PERIAUX J. A one shot domain decomposition/fictitious domain method for the solution of elliptic equations[M]// Parallel Computational Fluid Dynamics: New Trends and Advances . Elsevier Science, 1993.
|
[14] |
GILBARG D, TRUDINGER N S. Elliptic Partial Differential Equations of Second Order [M]. New York: Springer Verlag, 1977.
|
[15] |
GLOWINSKI R, LIONS J L, TRMOLIRES R. Numerical Analysis of Variational Inequalities [M]. New York: North-Holland Publishing Company, 1976.
|
[16] |
CHEN Hongquan, RAO Ling. The technique of the immersed boundary method: applications to the numerical solutions of imcompressible flows and wave scattering [J]. Modern Physics Letters B,2009,23(3): 437-440.
|
[17] |
ENRIQUEZ-REMIGIO S A, ROMA A M. Incompressible flows in elastic domains: an immersed boundary method approach[J]. Applied Mathematical Modeling,2005,29(1): 35-54.
|