Citation: | ZOU Xia. Traveling Wave Solutions for Nonlocal Dispersal SIR Models With Spatio-Temporal Delays[J]. Applied Mathematics and Mechanics, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118 |
[1] |
KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London(Series A),1927,115(772): 700-721.
|
[2] |
KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics II: the problem of endemicity[J]. Proceedings of the Royal Society of London(Series A),1932,138(834): 55-83.
|
[3] |
LI Jing, ZOU Xingfu. Modeling spatial spread of infectious disesses with a fixed latent period in a spatially continuous domain[J]. Bulletin of Mathematical Biology,2009,71(18): 2048-2079.
|
[4] |
HOSONO Y, LLYAS B. Traveling waves for a simple diffusive epidemic model[J]. Mathematical Models & Methods in Applied Sciences,1995,5(7): 935-966.
|
[5] |
WU Chufen, WENG Peixuan. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2011,15(3): 867-892.
|
[6] |
KOROBEINIKOV A. Global properties of infectious disease models with nonlinear incidence[J]. Bulletin of Mathematical Biology,2007,69(6): 1871-1886.
|
[7] |
WANG Xiangsheng, WANG Haiyan, WU Jianhong. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete and Continuous Dynamical Systems(Series A),2012,32(9): 3303-3324.
|
[8] |
MURRARY J D. Mathematical Biology II: Spatial Models and Biomedical Applications [M]. Berlin: Springer, 2003: 18.
|
[9] |
YANG Feiying, LI Wantong, WANG Zhicheng. Traveling waves in a nonlocal dispersal SIR epidemic model[J]. Nonlinear Analysis: Real World Applications,2015,23(7): 129-147.
|
[10] |
KENDALL D G. Mathematical models of the spread of infection[J]. Mathematics & Computer Science in Biology & Medicine,1965: 213-225.
|
[11] |
DIEKMANN O. Thresholds and travelling waves for the geographical spread of infection[J]. Journal of Mathematical Biology,1978,6(2): 109-130.
|
[12] |
THIEME H R. A model for the spatial spread of an epidemic[J]. Journal of Mathematical Biology,1977,4(4): 337-351.
|
[13] |
THIEME H R. The asymptotic behaviour of solutions of nonlinear integral equations[J]. Mathematische Zeitschrift,1977,157(2): 141-154.
|
[14] |
HUANG G, TAKEUCHI Y. Global analysis on delay epidemiological dynamic models with nonlinear incidence[J]. Journal of Mathematical Biology,2011,63(1): 125-139.
|
[15] |
BERETTA E, TAKEUCHI Y. Global stability of an SIR epidemic model with time delays[J]. Journal of Mathematical Biology,1995,33(3): 250-260.
|
[16] |
BAI Zhenguo, ZHANG Shengli. Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay[J]. Communications in Nonlinear Science and Numerical Simulation,2015,22(1/3): 1370-1381.
|
[17] |
BRITTON N F. Spatial structures and periodic traveling waves in an intergo-differential reaction-diffusion population model[M]. SIAM Journal on Applied Mathematics,1990,50(6): 1663-1688.
|
[18] |
GOURLEY S A, SO J W H, WU Jianhong. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics[J]. Journal of Mathematical Sciences,2004,124(4): 5119-5153.
|
[19] |
YANG Feiying, LI Yan, LI Wantong, et al. Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2013,18(7): 1969-1993.
|
[20] |
ZHAO Haiqin, WU Shiliang, LIU Sanyang. Pulsating traveling fronts and entire solutions in a discrete periodic system with a quiescent stage[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 2164-2176.
|