LIU Wensheng, LIXuan, MA Yunzhu, YANG Su. Study of Numerical Oscillation in Solving Transient Temperature Fields With the Finite Element Method[J]. Applied Mathematics and Mechanics, 2018, 39(4): 403-414. doi: 10.21656/1000-0887.380166
Citation: LIU Wensheng, LIXuan, MA Yunzhu, YANG Su. Study of Numerical Oscillation in Solving Transient Temperature Fields With the Finite Element Method[J]. Applied Mathematics and Mechanics, 2018, 39(4): 403-414. doi: 10.21656/1000-0887.380166

Study of Numerical Oscillation in Solving Transient Temperature Fields With the Finite Element Method

doi: 10.21656/1000-0887.380166
Funds:  The National High-tech R&D Program of China (863 Program) (2009AA034300)
  • Received Date: 2017-06-13
  • Rev Recd Date: 2017-09-25
  • Publish Date: 2018-04-15
  • To overcome the numerical oscillation in solving transient temperature fields with the finite element method, the heat conduction matrix and the heat capacity matrix were analyzed, and the cause for the oscillation of numerical solution as well as the method of eliminating oscillation were studied. According to the results, the cause for the numerical oscillation is that the thermal conduction matrix violates the second law of thermodynamics, and at the beginning of the iteration, the continuity hypothesis of the temperature change rate of the elements in the heat capacity matrix is far from the actual situation. Regularization of element shapes and application of appropriate lumped mass heat capacity matrices can effectively eliminate the numerical oscillation. With an infinite plate in the heat transfer process as an example, the conclusion was verified through comparison between different calculation methods.
  • loading
  • [1]
    马向平, 骆清国. 瞬态温度场有限元法求解的研究[J]. 装甲兵工程学院学报, 2002,16(2): 22-26.(MA Xiangping, LUO Qingguo. The investigation of a finite element analysis and solution of the transient temperature field[J]. Journal of Armored Force Engineering Institute,2002,16(2): 22-26.(in Chinese))
    [2]
    刘刚, 李长生, 刘相华. 有限元法求解瞬态温度场时的振荡问题[J]. 钢铁研究学报, 2008,20(7): 19-22.(LIU Gang, LI Changsheng, LIU Xianghua. Oscillation problem during solving for transient temperature field using FEM[J]. Journal of Iron and Steel Research,2008,20(7): 19-22.(in Chinese))
    [3]
    杨汇涛, 韩振兴. 加权变系数的瞬态导热有限元法[J]. 航空动力学报, 1997,12(1): 95-97.(YANG Huitao, HAN Zhenxing. A finite element analysis of transient heat conduction with weighted variable factor[J]. Journal of Aeronautical Power,1997,12(1): 95-97.(in Chinese))
    [4]
    林金木. 瞬态温度场的解及其振荡[J]. 工程热物理学报, 1996,17(3): 333-337.(LIN Jimu. Solutions and their oscillations in determining of transient temperature fields[J]. Journal of Engineering Thermophysics,1996,17(3): 333-337.(in Chinese))
    [5]
    纪崢. 关于瞬态温度场有限元分析中采用协调或集中质量热容矩阵的探讨[J]. 计算结构力学及其应用, 1986,3(2): 35-41.(JI Zheng. Discussion on use of consistent or lumped mass heat capacity matrix in finite element analysis of transient temperature field[J]. Computational structural Mechanics and Applications,1986,3(2): 35-41.(in Chinese))
    [6]
    陈罕, 周昆颖. 集中矩阵在传热有限元计算中的应用[J]. 北京化工学院学报(自然科学版), 1991,18(4): 45-51.(CHEN Han, ZHOU Kunying. The use of lumped capacitance matrix in FEM for solving transient heat transfer Problem[J].Journal of Beijing Institute of Chemical Technology,1991,18(4): 45-51.(in Chinese))
    [7]
    冯卫星. 单元形状对有限元法计算精度的影响[J]. 数学与科技, 1987(3): 58-62.(FENG Weixing. The Influence of unit shape on the accuracy of finite element method[J]. Mathematics and technology,1987(3): 58-62.(in Chinese))
    [8]
    施飞, 程晓民, 张韬杰, 等. 树脂传递成型过程中温度场的数值研究[J]. 应用数学和力学, 2016,37(3): 256-265.(SHI Fei, CHENG Xiaomin, ZHANG Taojie, et al. Numerical research of temperature field during resin transfer molding[J]. Applied Mathematics and Mechanics,2016,37(3): 256-265.(in Chinese))
    [9]
    郭延华, 杨建辉, 武浩. 平面有限元单元网格自动生成[J]. 河北建筑科技学院学报, 1998,15(4): 42-47.(GUO Yanhua, YANG Jianhui, WU Hao. Automatic generation of grids for two dimensional finite elements problems[J]. Journal of Hebei Institute of Architectural Science and Technology,1998,15(4): 42-47.(in Chinese))
    [10]
    孙彩华. 传热学中的有限元法数值分析[J]. 青海师范大学学报(自然科学版), 2013(1): 31-34.(SUN Caihua. Numerical analysis of the finite element method in heat transfer[J]. Journal of Qinghai Normal University (Natural Science),2013(1): 31-34.(in Chinese))
    [11]
    SAGAWA T, UEDA M. Second law of thermodynamics with discrete quantum feedback control[J]. Physical Review Letters,2008,100(8): 080403. doi: 10.1103/PhysRevLett.100.080403.
    [12]
    刘相华. 刚塑性有限元及其在轧制中的应用[M]. 北京: 冶金工业出版社, 1994.(LIU Xianghua. Rigid-Plastic Finite Element and Its Application in Rolling [M]. Beijing: Metallurgical Industry Press, 1994.(in Chinese))
    [13]
    段鹏飞, 江增荣, 丁桦. 有限单元质量质心集中方法的探讨[J]. 力学与实践, 2010,32(4): 58-61.(DUAN Pengfei, JIANG Zengrong, DING Hua. The method of centroid lumped mass in the finite element[J]. Mechanics in Engineering,2010,32(4): 58-61.(in Chinese))
    [14]
    ILINCA F, Htu J F. Galerkin gradient least-squares formulations for transient conduction heat transfer[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(27/28): 3073-3097.
    [15]
    奥齐西克 M N. 热传导[M]. 俞昌铭, 译. 北京: 高等教育出版社, 1984.(ZISIK M N. Heat Conduction [M]. YU Changming, transl. Beijing: Higher Education Press, 1984.(Chinese version))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1422) PDF downloads(801) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return