Citation: | ZHANG Zhigang, HOU Junjian, QI Zhaohui. A Numerical Integration Method for Angular Velocity Vectors to Avoid Singularity of Large Rotation[J]. Applied Mathematics and Mechanics, 2018, 39(4): 452-461. doi: 10.21656/1000-0887.380222 |
[1] |
王德春, 芮健, 张杰. 捷联惯性导航系统姿态算法综述[J]. 战术导弹控制技术, 2009,31(2): 41-44.(WANG Dechun, RUI Jian, ZHANG Jie. A review of attitude algorithms of strapdown inertial navigation system[J]. Control Technology of Tactical Missile,2009,31(2): 41-44.(in Chinese))
|
[2] |
刘延柱, 洪嘉振, 杨海兴. 多刚体系统动力学[M]. 北京: 高等教育出版社, 1989.(LIU Yanzhu, HONG Jiazhen, YANG Haixing. Rigid Multibody System Dynamics [M]. Beijing: Higher Education Press, 1989.(in Chinese))
|
[3] |
洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999.(HONG Jiazhen. Computational Dynamics of Multibody Systems [M]. Beijing: Higher Education Press, 1999.(in Chinese))
|
[4] |
SIMO J C. A finite strain beam formulation, the three-dimensional dynamic problem: part I[J]. Computer Methods in Applied Mechanics and Engineering,1985,49(1): 55-70.
|
[5] |
SIMO J C, VU-QUOC L. A three-dimensional finite-strain rod model, part II: computational aspects[J]. Computer Methods in Applied Mechanics and Engineering,1986,58(1): 79-116.
|
[6] |
ZUPAN D, SAJE M. Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(49/50): 5209-5248.
|
[7] |
ZUPAN D, SAJE M. The three-dimensional beam theory: finite element formulation based on curvature[J]. Computers & Structures,2003,81(18/19): 1875-1888.
|
[8] |
张志刚, 齐朝晖, 吴志刚. 基于曲率插值的大变形梁单元[J]. 应用数学和力学, 2013,34(6):620-629.(ZHANG Zhigang, QI Zhaohui, WU Zhigang. Large deformation beam element based on curvature interpolation[J]. Applied Mathematics and Mechanics,2013,34(6): 620-629.(in Chinese))
|
[9] |
张志刚, 齐朝晖, 吴志刚. 一种基于应变插值大变形梁单元的刚-柔耦合动力学分析[J]. 振动工程学报, 2015,28(3): 337-344.(ZHANG Zhigang, QI Zhaohui, WU Zhigang. Rigid-flexible dynamics analysis of a large deformation beam element based on interpolation of strains[J]. Journal of Vibration Engineering,2015,28(3): 337-344.(in Chinese))
|
[10] |
黄雪樵. 克服欧拉方程奇异性的双欧法[J]. 飞行力学, 1994,12(4): 28-37.(HUANG Xueqiao. The dual-Euler method for overcoming the singularity of Euler equation[J]. Flight Dynamics,1994,12(4): 28-37.(in Chinese))
|
[11] |
周伟, 张晓今, 寇保华, 秦子增. 双欧法在克服伞-弹系统欧拉方程奇异性中的应用[J]. 航天返回与遥感, 2003,24(3): 4-8.(ZHOU Wei, ZHANG Xiaojin, KOU Baohua, et al. The application of the dual-Euler method for overcoming the singularity of Euler equation in parachute-missile system[J]. Spacecraft Recovery & Remote Sensing,2003,24(3): 4-8.(in Chinese))
|
[12] |
孙丽, 秦永元. 捷联惯导系统姿态算法比较[J]. 中国惯性技术学报, 2006,14(3): 6-10.(SUN Li, QIN Yongyuan. Comparison of attitude algorithms of SINS[J]. Journal of Chinese Inertial Technology,2006,14(3): 6-10.(in Chinese))
|
[13] |
李跃军, 阎超. 飞行器姿态角解算的全角度双欧法[J]. 北京航空航天大学学报, 2007,33(5): 505-508.(LI Yuejun, YAN Chao. Improvement of dual-Euler method for full scale Eulerian angles solution of aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(5): 505-508.(in Chinese))
|
[14] |
王勇军, 秦永元, 杨波. 四元数、Rodrigues参数在卫星姿态解算上的对比研究[J]. 中国空间科学技术, 2007,27(3): 18-23.(WANG Yongjun, QIN Yongyuan, YANG Bo. Comparison of quaternion and Rodrigues parameters on attitude algorithm of secondary planet[J]. Chinese Space Science and Technology,2007,27(3): 18-23.(in Chinese))
|
[15] |
张荣辉, 贾宏光, 陈涛, 等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学精密工程, 2008,16(10): 1963-1970.(ZHANG Yonghui, JIA Hongguang, CHEN Tao, et al. Attitude solution for strapdown inertial navigation system based on quaternion algorithm[J]. Optics and Precision Engineering,2008,16(10): 1963-1970.(in Chinese))
|
[16] |
BAUCHAU O A, TRAINELLI L. The vectorial parameterization of rotation[J]. Nonlinear dynamics,2003,32(1): 71-92.
|
[17] |
ZUPAN E, SAJE M. Integrating rotation from angular velocity[J]. Advances in Engineering Software,2011,42(9): 723-733.
|
[18] |
齐朝晖. 多体系统动力学[M]. 北京: 科学出版社, 2008.(QI Zhaohui. Dynamics of Multibody Systems [M]. Beijing: Science Press, 2008.(in Chinese))
|