HABTE Mussie A, WU Chuijie. Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach[J]. Applied Mathematics and Mechanics, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040
Citation: HABTE Mussie A, WU Chuijie. Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach[J]. Applied Mathematics and Mechanics, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040

Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach

doi: 10.21656/1000-0887.390040
Funds:  The National Natural Science Foundation of China (11372068); the National Key Basic Research and Development Program of China (2014CB744104)
  • Received Date: 2018-01-24
  • Rev Recd Date: 2018-03-17
  • Publish Date: 2018-04-15
  • We combined the 3D lattice Boltzmann method (LBM) with the immersed boundary method (IBM) to study the flow physics induced by an elastic rectangular container undergoing harmonic oscillations surrounding a viscous fluid. We propose a semi-microscopic expression for the drag force to compute the hydrodynamic forces at the boundary nodes. An analytical deformation solution is used based on a thin plate elastic deformation theory to calculate the displacement experienced by the boundary. The numerical simulation result(All the results on figure axes, in this article, are displayed in lattice units.) based on the proposed method agreed with the theoretical predictions for channel flow with stationary boundary. The oscillating boundary simulation exhibits the expected flow pattern in line with theory.
  • loading
  • [1]
    KOZLOV V, KOZLOV N, SCHIPITSYN V. Steady flows in an oscillating deformable container: effect of the dimensionless frequency[J]. Physical Review Fluids, 2017,2(9): 094501.
    [2]
    MIRAS T, SCHOTTE J-S, OHAYON R. Liquid sloshing damping in an elastic container[J]. Journal of Applied Mechanics,2012,79(1): 010902.
    [3]
    LOPEZ D, GUAZZELLI E. Inertial effects on fibers settling in a vortical flow[J]. Physical Review Fluids,2017,2(2): 024306.
    [4]
    SAURET A, CEBRON D, LE BARS M, et al. Fluid flows in a librating cylinder[J]. Physics of Fluids,2012,24(2): 026603.
    [5]
    HABTE M A, WU Chuijie. Influence of wall motion on particle sedimentation using hybrid LB-IBM scheme[J]. Science China : Physics, Mechanics & Astronomy,2017,60(3): 034711.
    [6]
    J KAY J M, NEDDERMAN R M. Fluid Mechanics and Transfer Processes [M]. Cambridge, New York: Cambridge University Press, 1985.
    [7]
    SCHLICHTING H, GERSTEN K, KRAUSE E, et al. Boundary-Layer Theory [M]. Vol7. Springer, 1955.
    [8]
    BUXTON G A, VERBERG R, JASNOW D, et al. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models[J]. Physical Review E,2005,71(5): 056707.
    [9]
    WU Z, MA X. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation[J]. Proceedings: Mathematical, Physical, and Engineering Sciences,2016,472(2187): 20150728.
    [10]
    AURELI M, PORFIRI M. Low frequency and large amplitude oscillations of cantilevers in viscous fluids[J]. Applied Physics Letters,2010,96(16): 164102.
    [11]
    FANG H, WANG Z, LIN Z, et al. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels[J]. Physical Review E,2002,65(5): 051925.
    [12]
    DESCOVICH X, PONTRELLI G, MELCHIONNA S, et al. Modeling fluid flows in distensible tubes for applications in hemodynamics[J]. International Journal of Modern Physics C,2013,24(5): 1350030.
    [13]
    DOCTORS G M. Towards patient-specific modelling of cerebral blood flow using lattice-Boltzmann methods[D]. Ph D Thesis. University of London, 2011.
    [14]
    MOUNTRAKIS L, LORENZ E, HOEKSTRA A. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles[J]. Physical Review E,2017,96(1): 013302.
    [15]
    YAN G, LI T, YIN X. Lattice Boltzmann model for elastic thin plate with small deflection[J]. Computers & Mathematics With Applications,2012,63(8): 1305-1318.
    [16]
    ARENAS J P. On the vibration analysis of rectangular clamped plates using the virtual work principle[J]. Journal of Sound and Vibration,2003,266(4): 912-918.
    [17]
    GORMAN D. Free-vibration analysis of rectangular plates with clamped-simply supported edge conditions by the method of superposition[J].Journal of Applied Mechanics,1977,44(4): 743-749.
    [18]
    SUNG C-C, JAN C. Active control of structurally radiated sound from plates[J]. The Journal of the Acoustical Society of America,1997,102(1): 370-381.
    [19]
    LADD A, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics,2001,104(5/6): 1191-1251.
    [20]
    LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part 1: theoretical foundation[J]. Journal of Fluid Mechanics,1994,271: 285-309.
    [21]
    QIAN Y, D'HUMIRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters,1992,17(6): 479.
    [22]
    LADD A J. Lattice-Boltzmann methods for suspensions of solid particles[J]. Molecular Physics ,2015,113(17/18): 2531-2537.
    [23]
    LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation,part 2: numerical results[J]. Journal of Fluid Mechanics,1994,271: 311-339.
    [24]
    NIU X, SHU C, CHEW Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J].Physics Letters A,2006,354(3): 173-182.
    [25]
    SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics,1990,2(7): 1191-1203.
    [26]
    CAI S-G, OUAHSINE A, FAVIER J, et al. Moving immersed boundary method[J]. International Journal for Numerical Methods in Fluids,2017,85(5): 288-323.
    [27]
    DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow,1994,20(1): 153-159.
    [28]
    BROWN P P, LAWLER D F. Sphere drag and settling velocity revisited[J]. Journal of Environmental Engineering,2003,129(3): 222-231.
    [29]
    ESTEGHAMATIAN A, RAHMANI M, WACHS A. Numerical models for fluid-grains interactions: opportunities and limitations[C]// European Physical Journal Web of Conferences.Vol140. 2017: 09013.
    [30]
    SUNGKORN R, DERKSEN J. Simulations of dilute sedimenting suspensions at finite-particle reynolds numbers[J]. Physics of Fluids,2012,24(12): 123303.
    [31]
    REIDER M B, STERLING J D. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations[J].Computers & Fluids,1995,24(4): 459-467.
    [32]
    MAIER R S, BERNARD R S, GRUNAU D W. Boundary conditions for the lattice Boltzmann method[J]. Physics of Fluids,1996,8(7): 1788-1801.
    [33]
    ZHANG W, SHI B, WANG Y. 14-velocity and 18-velocity multiple-relaxation-time lattice Boltzmann models for three-dimensional incompressible flows[J]. Computers & Mathematics With Applications,2015,69(9): 997-1019.
    [34]
    HOFEMEIER P, SZNITMAN J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay[J].Journal of Applied Physiology,2015,118(11): 1375-1385.
    [35]
    SHI Y, SADER J E. Lattice Boltzmann method for oscillatory stokes flow with applications to micro-and nanodevices[J]. Physical Review E,2010,81(3): 036706.
    [36]
    SON S W, YOON H S, JEONG H K, et al. Discrete lattice effect of various forcing methods of body force on immersed boundary-lattice Boltzmann method[J].Journal of Mechanical Science and Technology,2013,27(2): 429-441.
    [37]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response[J]. Journal of Computational Physics,1993,109(1): 67-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1402) PDF downloads(700) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return