Volume 42 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LIU Juan, LONG Xianjun. Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342
Citation: LIU Juan, LONG Xianjun. Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342

Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems

doi: 10.21656/1000-0887.410342
Funds:

The National Natural Science Foundation of China(11471059)

  • Received Date: 2020-11-11
  • Rev Recd Date: 2021-05-05
  • The mixed type duality for nonsmooth multiobjective semi-infinite programming problems was studied. Firstly, by the Lagrange function, the definitions of weakly efficient solutions and efficient solutions to the mixed type duality were introduced. Secondly, by means of the Dini-pseudoconvexity, the weak duality theorems, the strong duality theorems and the converse duality theorems were obtained. The results generalize the main results in previous literatures.
  • loading
  • GOBERNA M A, LPEZ M A. Linear Semi-Infinite Optimization[M]. Chichester: Wiley, 1998.
    [2]LONG X J, PENG Z Y, WANG X F. Stable Farkas lemmas and duality for nonconvex composite semi-infinite programming problems[J]. Pacific Journal of Optimization,2019,15(2): 295-315.
    [3]LONG X J, LIU J, HUANG N J. Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials[J]. Numerical Functional Analysis and Optimization,2021,42(3): 279-297.
    [4]KIM D S, SON T Q. Characterizations of solutions sets of a class of nonconvex semi-infinite programming problems[J]. Journal of Nonlinear and Convex Analysis,2011,12(3): 429-440.
    [5]PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis,2019,27(1): 103-118.
    [6]PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70(1): 55-69.
    [7]杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017,38(5): 526-538.(YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2017,38(5): 526-538.(in Chinese))
    [8]GULATI T R, ISLAM M A. Sufficiency and duality in multiobjective programming involving generalized F-convex functions[J]. Journal of Mathematical Analysis and Applications,1994,183(1): 181-195.
    [9]AHMAD I. Sufficiency and duality in multiobjective programming with generalized (F,ρ)-convexity[J]. Journal of Applied Analysis,2005,11(1): 19-33.
    [10]TUNG L T. Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions[J]. Numerical Functional Analysis and Optimization,2020,62(1): 67-91.
    [11]SON T Q, KIM D S. ε-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints[J]. Journal of Global Optimization,2013,57(2): 447-465.
    [12]MARTINEZ-LEGAZ J E. Optimality conditions for pseudo-convex minimization over convex sets defined by tangentially convex constraints[J]. Optimization Letter,2015,9(5): 1017-1023.
    [13]LUC D T. Theory of Vector Optimization[M]. Berlin: Springer, 1989: 37-61.
    [14]TUNG L T. Strong Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential[J]. RAIRO-Operations Research,2018,52(4/5): 1019-1041.
    [15]赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019,40(6): 694-700.(ZHAO Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics,2019,40(6): 694-700.(in Chinese))
    [16]FAKHAR M, MOHAMMAD M R, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research,2018, 265(1): 39-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (776) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return