Citation: | LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama Method for Variable Fractional Stochastic Differential Equations With Caputo Derivatives[J]. Applied Mathematics and Mechanics, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250 |
[1] |
CHEN W, SUN H G, ZHANG X D, et al. Anomalous diffusion modeling by fractal and fractional derivatives[J]. Computers and Mathematics With Applications, 2010, 59(5): 1754-1758. doi: 10.1016/j.camwa.2009.08.020
|
[2] |
SUN H G, CHEN W, CHEN Y Q. Variable-order fractional differential operators in anomalous diffusion modeling[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(21): 4586-4592. doi: 10.1016/j.physa.2009.07.024
|
[3] |
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006.
|
[4] |
ROSSIKHIN Y A, SHITIKOVA M V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems[J]. Acta Mechanica, 1997, 120(1): 109-125.
|
[5] |
AHMED E, ELGAZZAR A S. On fractional order differential equations model for nonlocal epidemics[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 379(2): 607-614. doi: 10.1016/j.physa.2007.01.010
|
[6] |
TAJADODI H, KHAN Z A, IRSHAD A, et al. Exact solutions of conformable fractional differential equations[J]. Results in Physics, 2021, 22(1): 103916.
|
[7] |
KHODABIN M, MALEKNEJAD K, ASGARI M. Numerical solution of a stochastic population growth model in a closed system[J]. Advances in Difference Equations, 2013, 2013(1): 130. doi: 10.1186/1687-1847-2013-130
|
[8] |
SHAH A, KHAN R A, KHAN A, et al. Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution[J]. Mathematical Methods in the Applied Sciences, 2021, 44(2): 1628-1638. doi: 10.1002/mma.6865
|
[9] |
朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334
ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
|
[10] |
ALSHEHRI M H, DURAIHEM F Z, ALALYANI A, et al. A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data[J]. Journal of Taibah University for Science, 2021, 15(1): 26-36. doi: 10.1080/16583655.2021.1872197
|
[11] |
LIU F W, ANH V, TURNER I. Numerical solution of the space fractional Fokker-Planck equation[J]. Journal of Computational and Applied Mathematics, 2004, 166(1): 209-219. doi: 10.1016/j.cam.2003.09.028
|
[12] |
高兴华, 李宏, 刘洋. 非线性分数阶常微分方程的分段线性插值多项式方法[J]. 应用数学和力学, 2021, 42(5): 531-540. doi: 10.21656/1000-0887.410149
GAO Xinghua, LI Hong, LIU Yang. A piecewise linear interpolation polynomial method for nonlinear fractional ordinary differential equations[J]. Applied Mathematics and Mechanics, 2021, 42(5): 531-540. (in Chinese) doi: 10.21656/1000-0887.410149
|
[13] |
GARRAPPA R. Numerical solution of fractional differential equations: a survey and a software tutorial[J]. Mathematics, 2018, 6(2): 16. doi: 10.3390/math6020016
|
[14] |
JING Y Y, LI Z, XU L P. The averaging principle for stochastic fractional partial differential equations with fractional noises[J]. Journal of Partial Differential Equations, 2021, 34: 51-66. doi: 10.4208/jpde.v34.n1.4
|
[15] |
GUO Z K, FU H B, WANG W Y. An averaging principle for Caputo fractional stochastic differential equations with compensated Poisson random measure[J]. Journal of Partial Differential Equations, 2021, 35: 1-10.
|
[16] |
HIGHAM D J. Stochastic ordinary differential equations in applied and computational mathematics[J]. IMA Journal of Applied Mathematics, 2011, 76(3): 449-474. doi: 10.1093/imamat/hxr016
|
[17] |
MAO X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2015, 290: 370-384. doi: 10.1016/j.cam.2015.06.002
|
[18] |
钱思颖, 张静娜, 黄健飞. 带有弱奇性核的多项分数阶非线性随机微分方程的改进Euler-Maruyama格式[J]. 应用数学和力学, 2021, 42(11): 1203-1212. doi: 10.21656/1000-0887.420067
QIAN Siying, ZHANG Jingna, HUANG Jianfei. A modified Euler-Maruyama scheme for multi-term fractional nonlinear stochastic differential equations with weakly singular kernels[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1203-1212. (in Chinese) doi: 10.21656/1000-0887.420067
|
[19] |
WANG H T, ZHENG X C. Wellposedness and regularity of the variable-order time-fractional diffusion equations[J]. Journal of Mathematical Analysis and Applications, 2019, 475(2): 1778-1802. doi: 10.1016/j.jmaa.2019.03.052
|
[20] |
YANG Z W, ZHENG X C, ZHANG Z Q, et al. Strong convergence of Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise[J]. Chaos, Solitons and Fractals, 2021, 142: 110392. doi: 10.1016/j.chaos.2020.110392
|
[21] |
薛益民, 戴振祥, 刘洁. 一类Riemann-Liouville型分数阶微分方程正解的存在性[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201902017.htm
XUE Yimin, DAI Zhenxiang, LIU Jie. On the existence of positive solutions to a type of Riemann-Liouville fractional differential equations[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201902017.htm
|
[22] |
TUAN N H, MOHAMMADI H, REZAPOUR S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative[J]. Chaos, Solitons and Fractals, 2020, 140: 110107. doi: 10.1016/j.chaos.2020.110107
|
[23] |
张敬凯, 徐家发, 柏仕坤. 一类Caputo型分数阶微分方程边值问题多正解的存在性[J]. 重庆师范大学学报(自然科学版), 2022, 39(4): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202204012.htm
ZHANG Jingkai, XU Jiafa, BAI Shikun. Existence of multiple positive solutions for a class of Caputo type fractional differential equations boundary value problems[J]. Journal of Chongqing Normal University (Natural Science), 2022, 39(4): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202204012.htm
|
[24] |
DELAVARI H, BALEANU D, SADATI J. Stability analysis of Caputo fractional-order nonlinear systems revisited[J]. Nonlinear Dynamics, 2012, 67(4): 2433-2439.
|
[25] |
SON D T, HUONG P T, KLOOEDEN P E, et al. Asymptotic separation between solutions of Caputo fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2018, 36(4): 654-664.
|
[26] |
SONJA C, MARTIN H, ARNULF J. Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions[J]. IMA Journal of Numerical Analysis, 2021, 41(1): 493-548.
|
[27] |
CONT R, FOURNIE D. A functional extension of the Ito formula[J]. Comptes Rendus Mathematique, 2010, 348(1): 57-61.
|
[28] |
CONG N, SON D, TUAN H. On fractional Lyapunov exponent for solutions of linear fractional differential equations[J]. Fractional Calculus and Applied Analysis, 2014, 17(2): 285-306.
|
[29] |
SAMKO S G, KILBAS A A, MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. New York: Gordon and Breach, 1993.
|
[30] |
HUANG J F, TANG Y F, VAZQUEZ L. Convergence analysis of a block-by-block method for fractional differential equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2012, 5: 229-241.
|