Citation: | YAN Qi, LU Zhenhao, WANG Hongjing, FAN Wenping, MA Mingwei, NIU Yanan, WANG Liangjunhao. Applications of a Fractional Diffusion Model With Variable Coefficients in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(1): 84-91. doi: 10.21656/1000-0887.450010 |
[1] |
卢恋, 任伟新, 王世东. 基于分数阶Fourier变换的结构瞬时频率识别[J]. 应用数学和力学, 2022, 43(8): 825-834. doi: 10.21656/1000-0887.420241
LU Lian, REN Weixin, WANG Shidong. Structural instantaneous frequency identification based on the fractional Fourier transform[J]. Applied Mathematics and Mechanics, 2022, 43(8): 825-834. (in Chinese) doi: 10.21656/1000-0887.420241
|
[2] |
BAZHLEKOVA E, BAZHLEKOV I. Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of dimovski[J]. Fractional Calculus and Applied Analysis, 2014, 17(4): 954-976. doi: 10.2478/s13540-014-0209-x
|
[3] |
JIANG X, XU M, QI H. The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 262-269. doi: 10.1016/j.nonrwa.2008.10.057
|
[4] |
CHEN S, LIU F, BURRAGE K. Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media[J]. Computers & Mathematics With Applications, 2014, 67(9): 1673-1681.
|
[5] |
PAN M, ZHENG L, LIU F, et al. A spatial-fractional thermal transport model for nanofluid in porous media[J]. Applied Mathematical Modelling, 2018, 53: 622-634. doi: 10.1016/j.apm.2017.08.026
|
[6] |
JIANG H, CHENG Y, YUAN L, et al. A fractal theory based fractional diffusion model used for the fast desorption process of methane in coal[J]. Chaos, 2013, 23(3): 033111. doi: 10.1063/1.4813597
|
[7] |
YANG X, JIANG X, KANG J. Parameter identification for fractional fractal diffusion model based on experimental data[J]. Chaos, 2019, 29(8): 083134. doi: 10.1063/1.5111832
|
[8] |
FAN W, JIANG X, CHEN S. Parameter estimation for the fractional fractal diffusion model based on its numerical solution[J]. Computers & Mathematics With Applications, 2016, 71(2): 642-651.
|
[9] |
REN J, WANG Z, LI B, et al. Fractal-time-dependent fick diffusion model of coal particles based on desorption-diffusion experiments[J]. Energy & Fuels, 2022, 36(12): 6198-6215.
|
[10] |
PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
|
[11] |
李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3): 633-643.
LI Zhiqiang, LIU Yong, XU Yanpeng, et al. Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J]. Journal of China Coal Society, 2016, 41(3): 633-643. (in Chinese)
|
[12] |
CHEN H, STYNES M. A high order method on graded meshes for a time-fractional diffusion problem[M]//Lecture Notes in Computer Science. Cham: Springer, 2019: 15-27.
|
[13] |
LIAO H L, TANG T, ZHOU T. A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations[J]. Journal of Computational Physics, 2020, 414: 109473. doi: 10.1016/j.jcp.2020.109473
|
[14] |
LU Z, FAN W. A fast algorithm for multi-term time-space fractional diffusion equation with fractional boundary condition[J/OL]. Numerical Algorithms, 2024[2024-07-24].
|
[15] |
CHI X Q, YU B, JIANG X Y. Parameter estimation for the time fractional heat conduction model based on experimental heat flux data[J]. Applied Mathematics Letters, 2020, 102: 106094. doi: 10.1016/j.aml.2019.106094
|
[16] |
LIU Q, WANG J, LIU J, et al. Determining diffusion coefficients of coal particles by solving the inverse problem based on the data of methane desorption measurements[J]. Fuel, 2022, 308: 122045. doi: 10.1016/j.fuel.2021.122045
|