Volume 45 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027
Citation: CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027

An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants

doi: 10.21656/1000-0887.450027
  • Received Date: 2024-02-02
  • Rev Recd Date: 2024-03-24
  • Publish Date: 2024-12-01
  • An accurate phase field method for 2-phase flow with soluble surfactants was developed based on the phase field theory. The key point of this method was the utilization of consistent and conservative mass flux to ensure the conservation of momentum transport across the interface. The finite-volume method was used to discretize the governing equations in their conservative form. The 5th-order WENO scheme was chosen to effectively handle the convective terms, aimed to enhance accuracy and robustness in addressing steep variations in the interfacial region. Furthermore, various 2D difference templates were designed to optimize gradient discretization in the surface tension term. Particularly, with the template corresponding to the lattice Boltzmann D2Q9 model, a notable reduction of the spurious velocity and a significant improvement of the accuracy of surfactant concentration prediction were achieved. Various examples such as static droplets, fusion of 2 droplets, bubble rise with a large density ratio, deformation and breakage of individual droplets in shear flow demonstrate the accuracy, conservative properties, and robustness of the proposed method.
  • (Contributed by ZHANG Liangqi, ZENG Zong, M.AMM Editorial Board)
  • loading
  • [1]
    BELHAJ A F, ELRAIES K A, MAHMOOD S M, et al. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 125-137. doi: 10.1007/s13202-019-0685-y
    [2]
    ROSEN M J, KUNJAPPU J T. Surfactants and Interfacial Phenomena[M]. John Wiley & Sons, 2012.
    [3]
    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [4]
    孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099

    SUN Tao, PANG Mingjun, FEI Yang. Effects of bubble spacings on interface properties and wake flow for 2 contaminated spherical bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. (in Chinese)) doi: 10.21656/1000-0887.410099
    [5]
    MANIKANTAN H, SQUIRES T M. Surfactant dynamics: hidden variables controlling fluid flows[J]. Journal of Fluid Mechanics, 2020, 892: P1. doi: 10.1017/jfm.2020.170
    [6]
    STONE H A. Dynamics of drop deformation and breakup in viscous fluids[J]. Annual Review of Fluid Mechanics, 1994, 26: 65-102. doi: 10.1146/annurev.fl.26.010194.000433
    [7]
    TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. doi: 10.1006/jcph.2001.6726
    [8]
    MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    [9]
    STONE H A, LEAL L G. The effects of surfactants on drop deformation and breakup[J]. Journal of Fluid Mechanics, 1990, 220: 161-186. doi: 10.1017/S0022112090003226
    [10]
    MILLIKEN W J, LEAL L G. The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility[J]. Journal of Colloid and Interface Science, 1994, 166(2): 275-285. doi: 10.1006/jcis.1994.1296
    [11]
    MURADOGLU M, TRYGGVASON G. A front-tracking method for computation of interfacial flows with soluble surfactants[J]. Journal of Computational Physics, 2008, 227(4): 2238-2262. doi: 10.1016/j.jcp.2007.10.003
    [12]
    LUO Z Y, SHANG X L, BAI B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J]. Physics of Fluids, 2019, 31(11): 117104. doi: 10.1063/1.5125949
    [13]
    LUO Z Y, SHANG X L, BAI B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J]. Physics of Fluids, 2018, 30(7): 077101. doi: 10.1063/1.5026874
    [14]
    LAI M C, TSENG Y H, HUANG H. An immersed boundary method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2008, 227(15): 7279-7293. doi: 10.1016/j.jcp.2008.04.014
    [15]
    LAI M C, TSENG Y H, HUANG H. Numerical simulation of moving contact lines with surfactant by immersed boundary method[J]. Communications in Computational Physics, 2010, 8(4): 735-757. doi: 10.4208/cicp.281009.120210a
    [16]
    HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [17]
    OSHER S, FEDKIW R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502. doi: 10.1006/jcph.2000.6636
    [18]
    JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155(1): 96-127. doi: 10.1006/jcph.1999.6332
    [19]
    RENARDY Y Y, RENARDY M, CRISTINI V. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio[J]. European Journal of Mechanics B: Fluids, 2002, 21(1): 49-59. doi: 10.1016/S0997-7546(01)01159-1
    [20]
    JAMES A J, LOWENGRUB J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2004, 201(2): 685-722. doi: 10.1016/j.jcp.2004.06.013
    [21]
    XU J J, LI Z, LOWENGRUB J, et al. A level-set method for interfacial flows with surfactant[J]. Journal of Computational Physics, 2006, 212(2): 590-616. doi: 10.1016/j.jcp.2005.07.016
    [22]
    LARADJI M, GUO H, GRANT M, et al. The effect of surfactants on the dynamics of phase separation[J]. Journal of Physics: Condensed Matter, 1992, 4(32): 6715-6728. doi: 10.1088/0953-8984/4/32/006
    [23]
    LIU H H, ZHANG Y H. Phase-field modeling droplet dynamics with soluble surfactants[J]. Journal of Computational Physics, 2010, 229(24): 9166-9187. doi: 10.1016/j.jcp.2010.08.031
    [24]
    ENGBLOM S, DO-QUANG M, AMBERG G, et al. On diffuse interface modeling and simulation of surfactants in two-phase fluid flow[J]. Communications in Computational Physics, 2013, 14(4): 879-915. doi: 10.4208/cicp.120712.281212a
    [25]
    SOLIGO G, ROCCON A, SOLDATI A. Coalescence of surfactant-laden drops by phase field method[J]. Journal of Computational Physics, 2019, 376: 1292-1311. doi: 10.1016/j.jcp.2018.10.021
    [26]
    ZHU G P, KOU J S, YAO B W, et al. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants[J]. Journal of Fluid Mechanics, 2019, 879: 327-359. doi: 10.1017/jfm.2019.664
    [27]
    ZONG Y J, ZHANG C H, LIANG H, et al. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method[J]. Physics of Fluids, 2020, 32(12): 122105. doi: 10.1063/5.0028554
    [28]
    ZHOU W N, XING Y F, LIU X L, et al. Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method[J]. Physics of Fluids, 2023, 35(1): 012109. doi: 10.1063/5.0132174
    [29]
    GUO Z, LIN P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects[J]. Journal of Fluid Mechanics, 2015, 766: 226-271. doi: 10.1017/jfm.2014.696
    [30]
    李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129

    LI Jiayu, ZENG Zhong, QIAO Long. Numerical simulation of droplets' dynamic wetting process with the phase field method[J]. Applied Mathematics and Mechanics, 2019, 40(9): 957-967. (in Chinese)) doi: 10.21656/1000-0887.400129
    [31]
    TANG T, QIAO Z H. Efficient numerical methods for phase-field equations[J]. Scientia Sinica Mathematica, 2020, 50(6): 775. doi: 10.1360/SSM-2020-0042
    [32]
    YUE P T, ZHOU C F, FENG J J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations[J]. Journal of Computational Physics, 2007, 223(1): 1-9. doi: 10.1016/j.jcp.2006.11.020
    [33]
    HUANG Z Y, LIN G, ARDEKANI A M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J]. Journal of Computational Physics, 2020, 406: 109192. doi: 10.1016/j.jcp.2019.109192
    [34]
    DONG S, SHEN J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J]. Journal of Computational Physics, 2012, 231(17): 5788-5804. doi: 10.1016/j.jcp.2012.04.041
    [35]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [36]
    YUN A, LI Y B, KIM J. A new phase-field model for a water-oil-surfactant system[J]. Applied Mathematics and Computation, 2014, 229: 422-432. doi: 10.1016/j.amc.2013.12.054
    [37]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [38]
    LIU H H, WU L, BA Y, et al. A lattice Boltzmann method for axisymmetric thermocapillary flows[J]. International Journal of Heat and Mass Transfer, 2017, 104: 337-350. doi: 10.1016/j.ijheatmasstransfer.2016.08.068
    [39]
    CHANG C H, FRANSES E I. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 1-45.
    [40]
    YUE L Q, CHAI Z H, WANG H L, et al. Improved phase-field-based lattice Boltzmann method for thermocapillary flow[J]. Physical Review E, 2022, 105(1/2): 015314.
    [41]
    GUERMOND J L, MINEV P, SHEN J. An overview of projection methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/47): 6011-6045.
    [42]
    POPINET S. Numerical models of surface tension[J]. Annual Review of Fluid Mechanics, 2018, 50: 49-75. doi: 10.1146/annurev-fluid-122316-045034
    [43]
    CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J]. Physical Review E, 2018, 98(6): 063314. doi: 10.1103/PhysRevE.98.063314
    [44]
    XIAO Y, ZENG Z, ZHANG L Q, et al. A spectral element-based phase field method for incompressible two-phase flows[J]. Physics of Fluid, 2022, 34(2): 022114. doi: 10.1063/5.0077372
    [45]
    ALAND S, VOIGT A. Benchmark computations of diffuse interface models for two-dimensional bubble dynamics[J]. International Journal for Numerical Methods in Fluids, 2012, 69(3): 747-761. doi: 10.1002/fld.2611
    [46]
    TAYLOR G I. The formation of emulsions in definable fields of flow[J]. Proceedings of the Royal Society of London (Series A): Containing Papers of a Mathematical and Physical Character, 1934, 146(858): 501-523.
    [47]
    SHAPIRA M, HABER S. Low Reynolds number motion of a droplet in shear flow including wall effects[J]. International Journal of Multiphase Flow, 1990, 16(2): 305-321. doi: 10.1016/0301-9322(90)90061-M
    [48]
    ZHOU H, POZRIKIDIS C. The flow of suspensions in channels: single files of drops[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 311-324. doi: 10.1063/1.858893
    [49]
    LI J, RENARDY Y Y, RENARDY M. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method[J]. Physics of Fluids, 2000, 12(2): 269-282. doi: 10.1063/1.870305
    [50]
    SOLIGO G, ROCCON A, SOLDATI A. Deformation of clean and surfactant-laden droplets in shear flow[J]. Meccanica, 2020, 55(2): 371-386. doi: 10.1007/s11012-019-00990-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (111) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return