Citation: | YANG Shuai, YUAN Si. EEP Elements for the 1 D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036 |
[1] |
BABUŠKA I, RHEINBOLDT W C. A-posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12 (10): 1597-1615. doi: 10.1002/nme.1620121010
|
[2] |
BABUŠKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17 : 519-540.
|
[3] |
STRANG W G, FIX G J. An Analysis of the Finite Element Method[M]. New Jersey: Prentice-Hall, 1973.
|
[4] |
ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique[J]. International Journal for Numerical Methods in Engineering, 1992, 33 (7): 1331-1364. doi: 10.1002/nme.1620330702
|
[5] |
ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering, 1992, 33 (7): 1365-1382. doi: 10.1002/nme.1620330703
|
[6] |
KU J, STYNES M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems[J]. BIT Numerical Mathematics, 2024, 64 (1): 7. doi: 10.1007/s10543-024-01008-x
|
[7] |
BRUNNER M, INNERBERGER M, MIRAÇI A, et al. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs[J]. IMA Journal of Numerical Analysis, 2024, 44 (3): 1560-1596. doi: 10.1093/imanum/drad039
|
[8] |
WANG C, PING X, WANG X. An adaptive finite element method for crack propagation based on a multifunctional super singular element[J]. International Journal of Mechanical Sciences, 2023, 247 : 108191. doi: 10.1016/j.ijmecsci.2023.108191
|
[9] |
裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45 (4): 391-399. doi: 10.21656/1000-0887.440299
QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics, 2024, 45 (4): 391-399. (in Chinese) doi: 10.21656/1000-0887.440299
|
[10] |
袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21 (2): 1-9.
YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional fem[J]. Engineering Mechanics, 2004, 21 (2): 1-9. (in Chinese)
|
[11] |
袁驷, 和雪峰. 基于EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2006, 27 (11): 1280-1291. http://www.applmathmech.cn/article/id/814
YUAN Si, HE Xuefeng. Self-adaptive strategy for one-dimensional finite element method based on EEP method[J]. Applied Mathematics and Mechanics, 2006, 27 (11): 1280-1291. (in Chinese) http://www.applmathmech.cn/article/id/814
|
[12] |
YUAN S, WU Y, XING Q. Recursive super-convergence computation for multi-dimensional problemsvia one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39 (7): 1031-1044. doi: 10.1007/s10483-018-2345-7
|
[13] |
YUAN S, YUAN Q. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43 (4): 603-614. doi: 10.1007/s10483-022-2831-6
|
[14] |
JIANG K, YUAN S, XING Q. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique[J]. Engineering Computations, 2020, 37 (8): 2847-2869. doi: 10.1108/EC-08-2019-0369
|
[15] |
袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式: Ⅰ算法公式[J]. 工程力学, 2007, 24 (10): 1-5.
YUAN Si, WANG Xu, XING Qinyan, et al. A scheme with optimal order of super-convergence based on eep method: Ⅰ formulation[J]. Engineering Mechanics, 2007, 24 (10): 1-5. (in Chinese)
|
[16] |
袁驷, 杨帅. 一维Galerkin有限元EEP超收敛计算的加强格式[J/OL]. 工程力学, 2023(2023-12-20)[2024-05-08].
YUAN Si, YANG Shuai. Enhanced form for EEP super-convergence calculation in one-dimensional Galerkin finite element method[J/OL]. Engineering Mechanics, 2023(2023-12-20)[2024-05-08].
|
[17] |
袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014, 31 (12): 1-3.
YUAN Si, XING Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics, 2014, 31 (12): 1-3. (in Chinese)
|
[18] |
黄泽敏, 袁驷. 线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算[J]. 工程力学, 2022, 39 (S1): 9-14.
HUANG Zemin, YUAN Si. Nodal accuracy improvement and super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics, 2022, 39 (S1): 9-14. (in Chinese)
|
[19] |
张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996, 35 (4): 421-429.
ZHANG Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam[J]. Journal of Fudan University (Natural Science), 1996, 35 (4): 421-429. (in Chinese)
|
[20] |
赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000, 23 (4): 6-11.
ZHAO Xinzhong, CHEN Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence[J]. Journal of Natural Science of Hunan Normal University, 2000, 23 (4): 6-11. (in Chinese)
|
[21] |
孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36 (2): 17-25.
SUN Haohan, YUAN Si. Performance of the adaptive finite element method based on the element-energy-projection technique[J]. Engineering Mechanics, 2019, 36 (2): 17-25. (in Chinese)
|