Citation: | ZHANG Manzhe, GU Shuitao, FENG Zhiqiang. Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity[J]. Applied Mathematics and Mechanics, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038 |
[1] |
BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197-224. doi: 10.1016/0045-7825(88)90086-2
|
[2] |
BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1 (4): 193-202. doi: 10.1007/BF01650949
|
[3] |
SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures and Machines, 1997, 25 (4): 493-524. doi: 10.1080/08905459708945415
|
[4] |
ROZVANY G I N. Topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 89. doi: 10.1007/s001580050173
|
[5] |
ROZVANY G I N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 90-108. doi: 10.1007/s001580050174
|
[6] |
WALLIN M, TORTORELLI D A. Nonlinear homogenization for topology optimization[J]. Mechanics of Materials, 2020, 145 : 103324. doi: 10.1016/j.mechmat.2020.103324
|
[7] |
DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112 : 841-854. doi: 10.1016/j.applthermaleng.2016.10.134
|
[8] |
BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2007, 50 (15/16): 2859-2873.
|
[9] |
DVHRING M B, JENSEN J S, SIGMUND O. Acoustic design by topology optimization[J]. Journal of Sound and Vibration, 2008, 317 (3/5): 557-575.
|
[10] |
WADBRO E, BERGGREN M. Topology optimization of an acoustic horn[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196 (1/3): 420-436.
|
[11] |
DESAI J, FAURE A, MICHAILIDIS G, et al. Topology optimization in acoustics and elasto-acoustics via a level-set method[J]. Journal of Sound and Vibration, 2018, 420 : 73-103. doi: 10.1016/j.jsv.2018.01.032
|
[12] |
MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10 (2): 024012. doi: 10.1103/PhysRevApplied.10.024012
|
[13] |
MAZZOTTI M, FOEHR A, BILAL O R, et al. Bio-inspired non self-similar hierarchical elastic metamaterials[J]. International Journal of Mechanical Sciences, 2023, 241 : 107915. doi: 10.1016/j.ijmecsci.2022.107915
|
[14] |
ERINGEN A. Microcontinuum Field Theories, : Foundations and Solids[M]. New York : Springer, 2012.
|
[15] |
COSSERAT E, COSSERAT F. Theorie des corps d'edormables[Z]. Cornell University Library Historical Math Monographs, 1909.
|
[16] |
REDA H, ALAVI S E, NASIMSOBHAN M, et al. Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories[J]. Mechanics of Materials, 2021, 155 : 103728. doi: 10.1016/j.mechmat.2020.103728
|
[17] |
ERINGEN A C, SUHUBI E S. Nonlinear theory of simple micro-elastic solids, Ⅰ[J]. International Journal of Engineering Science, 1964, 2 (2): 189-203. doi: 10.1016/0020-7225(64)90004-7
|
[18] |
MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11 (1): 415-448. doi: 10.1007/BF00253946
|
[19] |
TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11 (1): 385-414. doi: 10.1007/BF00253945
|
[20] |
LAI P, CONG Y, GU S, et al. Size-dependent parametrisation of active vibration control for periodic piezoelectric microplate coupled systems: a couple stress-based isogeometric approach[J]. Mechanics of Materials, 2023, 186 : 104788. doi: 10.1016/j.mechmat.2023.104788
|
[21] |
YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39 (10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
|
[22] |
ROVATI M, VEBER D. Optimal topologies for micropolar solids[J]. Structural and Multidisciplinary Optimization, 2007, 33 (1): 47-59.
|
[23] |
LIU S, SU W. Topology optimization of couple-stress material structures[J]. Structural and Multidisciplinary Optimization, 2010, 40 (1): 319-327.
|
[24] |
SU W, LIU S. Topology design for maximization of fundamental frequency of couple-stress continuum[J]. Structural and Multidisciplinary Optimization, 2016, 53 (3): 395-408. doi: 10.1007/s00158-015-1316-y
|
[25] |
GANGHOFFER J F, GODA I, NOVOTNY A A, et al. Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2018, 98 (5): 696-717. doi: 10.1002/zamm.201700154
|
[26] |
CHEN W, HUANG X. Topological design of 3D chiral metamaterials based on couple-stress homogenization[J]. Journal of the Mechanics and Physics of Solids, 2019, 131 : 372-386. doi: 10.1016/j.jmps.2019.07.014
|
[27] |
YANG R J, CHEN C J. Stress-based topology optimization[J]. Structural Optimization, 1996, 12 (2): 98-105.
|
[28] |
ROZVANY G I N. On design-dependent constraints and singular topologies[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 164-172. doi: 10.1007/s001580050181
|
[29] |
DUYSINX P, SIGMUND O. New developments in handling stress constraints in optimal material distribution[C]// 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St Louis, MO, USA, 1998. DOI:
|
[30] |
BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36 (2): 125-141. doi: 10.1007/s00158-007-0203-6
|
[31] |
LUO Y, WANG M Y, KANG Z. An enhanced aggregation method for topology optimization with local stress constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254 : 31-41. doi: 10.1016/j.cma.2012.10.019
|
[32] |
PICELLI R, TOWNSEND S, BRAMPTON C, et al. Stress-based shape and topology optimization with the level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329 : 1-23. doi: 10.1016/j.cma.2017.09.001
|
[33] |
HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design, 2007, 43 (14): 1039-1049. doi: 10.1016/j.finel.2007.06.006
|
[34] |
XIA L, ZHANG L, XIA Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333 : 356-370. doi: 10.1016/j.cma.2018.01.035
|
[35] |
FAN Z, XIA L, LAI W, et al. Evolutionary topology optimization of continuum structures with stress constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59 (2): 647-658. doi: 10.1007/s00158-018-2090-4
|
[36] |
ADACHI T, TOMITA Y, TANAKA M. Computational simulation of deformation behavior of 2D-lattice continuum[J]. International Journal of Mechanical Sciences, 1998, 40 (9): 857-866. doi: 10.1016/S0020-7403(97)00127-6
|
[37] |
LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41 (4): 605-620. doi: 10.1007/s00158-009-0440-y
|
[38] |
DUYSINX P, BENDSØE M P. Topology optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering, 1998, 43 (8): 1453-1478. doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
|
[39] |
KAHROBAIYAN M H, RAHAEIFARD M, AHMADIAN M T. A size-dependent yield criterion[J]. International Journal of Engineering Science, 2014, 74 : 151-161. doi: 10.1016/j.ijengsci.2013.09.004
|
[40] |
SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 120-127. doi: 10.1007/s001580050176
|
[41] |
彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022, 43 (9): 976-986. doi: 10.21656/1000-0887.420277
PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 976-986. (in Chinese) doi: 10.21656/1000-0887.420277
|
[42] |
叶彦鹏, 顾水涛, 刘敏, 等. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42 (5): 441-451. doi: 10.21656/1000-0887.410354
YE Yanpeng, GU Shuitao, LIU Min, et al. Optimization software development for offshore turbine transition structures based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42 (5): 441-451. (in Chinese) doi: 10.21656/1000-0887.410354
|