Volume 45 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
SUN Xuechao, LIU Shaobao, LIN Min, XU Feng, LU Tianjian. The Bio-Thermo-Mechano-Electrophysiology[J]. Applied Mathematics and Mechanics, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079
Citation: SUN Xuechao, LIU Shaobao, LIN Min, XU Feng, LU Tianjian. The Bio-Thermo-Mechano-Electrophysiology[J]. Applied Mathematics and Mechanics, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079

The Bio-Thermo-Mechano-Electrophysiology

doi: 10.21656/1000-0887.450079
  • Received Date: 2024-03-29
  • Rev Recd Date: 2024-04-16
  • Publish Date: 2024-06-01
  • The behaviors of biomaterials are influenced by a multitude of factors including temperature, mechanical load, and biochemical environments. The dynamic equilibrium of organism within a multiphysical field is crucial for its physiological functions. Therefore, a comprehensive investigation into the bio-thermo-mechano-electrophysiological behaviors is of great significance for the elucidation of pathologies and the development of effective diagnostic and therapeutic strategies. Such inquiries inherently require a multidisciplinary approach, necessitating the integration of diverse disciplinary knowledge and the pioneering of innovative cross-disciplinary research. The core idea is to discover key scientific questions, identify interdisciplinary disciplines, integrate disciplinary advantages, promote theoretical and technological innovations, and bring new breakthroughs in the biomedical field. With the discovery of DNA double helix structure in Cambridge University as the background, and the tissues of brain, skin, and teeth, etc. as examples, this paper introduces the evolution and intension of bio-thermo-mechano-electrophysiology, a new interdisciplinary subject.

  • (Contributed by LIU Shaobao, LIN Min, LU Tianjian, M.AMM Editorial Board)
  • loading
  • [1]
    WATSON J D. The Double Helix[M]. Hachette, 2012.
    [2]
    SCHRÖDINGER E. What is Life? The Physical Aspect of the Living Cell and Mind[M]. Cambridge: Cambridge University Press, 1944.
    [3]
    CRICK F H C. The double helix: a personal view[J]. Nature, 1974, 248(5451): 766-769. doi: 10.1038/248766a0
    [4]
    HALLORAN S M. The birth of molecular biology: an essay in the rhetorical criticism of scientific discourse[J]. Rhetoric Review, 1984, 3(1): 70-83. doi: 10.1080/07350198409359083
    [5]
    WILLIAMS G. Unravelling the Double Helix: the Lost Heroes of DNA[M]. Hachette, 2019.
    [6]
    WATSON J D, CRICK F H C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4356): 737-738. doi: 10.1038/171737a0
    [7]
    CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272. doi: 10.1016/S0022-5096(99)00030-7
    [8]
    XU F, LU T J. Introduction to Skin Biothermomechanics and Thermal Pain[M]. New York: Science Press, 2011.
    [9]
    卢天健, 林敏, 徐峰. 牙齿的热-力-电生理耦合行为[M]. 北京: 科学出版社, 2015.

    LU Tianjian, LIN Min, XU Feng. Thermo-Mechano-Electrophysiological Coupling Behaviors of Teeth[M]. Beijing: Science Press, 2015. (in Chinese)
    [10]
    KELLEY D H, THOMAS J H. Cerebrospinal fluid flow[J]. Annual Review of Fluid Mechanics, 2023, 55: 237-264. doi: 10.1146/annurev-fluid-120720-011638
    [11]
    WEINBAUM S, JIJI L M, LEMONS D E. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer, part Ⅰ: anatomical foundation and model conceptualization[J]. Journal of Biomechanical Engineering, 1984, 106(4): 321-330. doi: 10.1115/1.3138501
    [12]
    LEMONS D E, CHIEN S, CRAWSHAW L I, et al. Significance of vessel size and type in vascular heat transfer[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 1987, 253(1): R128-R135. doi: 10.1152/ajpregu.1987.253.1.R128
    [13]
    CREZEE J, LAGENDIJK J J. Temperature uniformity during hyperthermia: the impact of large vessels[J]. Physics in Medicine and Biology, 1992, 37: 1321-1337. doi: 10.1088/0031-9155/37/6/009
    [14]
    CHATO J C. Heat transfer to blood vessels[J]. Journal of Biomechanical Engineering, 1980, 102(2): 110-118. doi: 10.1115/1.3138205
    [15]
    RICHARDSON A W, IMIG C G, FEUCHT B L, et al. Relationship between deep tissue temperature and blood flow during electromagnetic irradiation[J]. Archives of Physical Medicine and Rehabilitation, 1950, 31: 19-25.
    [16]
    刘静, 王存诚, 任泽霈, 等. 生物活体组织温度振荡效应的理论与实验[J]. 清华大学学报(自然科学版), 1997, 37(2): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB702.021.htm

    LIU Jing, WANG Cuncheng, REN Zepei, et al. Theoretical and experimental study on temperature oscillation effects in living biological tissues[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(2): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB702.021.htm
    [17]
    BANERJEE A, OGALE A A, DAS C, et al. Temperature distribution in different materials due to short pulse laser irradiation[J]. Heat Transfer Engineering, 2005, 26(8): 41-49. doi: 10.1080/01457630591003754
    [18]
    JOSEPH F. Face aux Objections Contre sa Théorie de la Chaleur: Lettres Inédites, 1808-1816[M]. Bibliothèque Nationale, 1980.
    [19]
    OZISIK M N, TZOU D Y. On the wave theory in heat conduction[J]. Journal of Heat Transfer, 1994, 116(4): 526-535.
    [20]
    TZOU D Y. Macro- to Microscale Heat Transfer: the Lagging Behavior[M]. John Wiley & Sons, 2014.
    [21]
    TZOU D Y. Experimental support for the lagging behavior in heat propagation[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4): 686-693. doi: 10.2514/3.725
    [22]
    WU J Z, DONG R G, RAKHEJA S, et al. Simulation of mechanical responses of fingertip to dynamic loading[J]. Medical Engineering & Physics, 2002, 24(4): 253-264.
    [23]
    WU J Z, DONG R G, SMUTZ W P, et al. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis[J]. Bio-Medical Materials and Engineering, 2003, 13(4): 373-385.
    [24]
    WU J Z, CUTLIP R G, WELCOME D, et al. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests[J]. Bio-Medical Materials and Engineering, 2006, 16(1): 53-66.
    [25]
    SHERGOLD O A, FLECK N A. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin[J]. Journal of Biomechanical Engineering, 2005, 127(5): 838-848. doi: 10.1115/1.1992528
    [26]
    SHERGOLD O A, FLECK N A, RADFORD D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates[J]. International Journal of Impact Engineering, 2006, 32(9): 1384-1402. doi: 10.1016/j.ijimpeng.2004.11.010
    [27]
    FLORY P J, GARRETT R R. Phase transitions in collagen and gelatin systems1[J]. Journal of the American Chemical Society, 1958, 80(18): 4836-4845. doi: 10.1021/ja01551a020
    [28]
    ARNOCZKY S P, AKSAN A. Thermal modification of connective tissues: basic science considerations and clinical implications[J]. Journal of the American Academy of Orthopaedic Surgeons, 2000, 8(5): 305-313. doi: 10.5435/00124635-200009000-00004
    [29]
    HUMPHREY J D. Continuum thermomechanics and the clinical treatment of disease and injury[J]. Applied Mechanics Review, 2003, 56(2): 231-260. doi: 10.1115/1.1536177
    [30]
    DAVIS E D, DOSS D J, HUMPHREY J D, et al. Effects of heat-induced damage on the radial component of thermal diffusivity of bovine aorta[J]. Journal of Biomechanical Engineering, 2000, 122(3): 283-286. doi: 10.1115/1.429658
    [31]
    CHEN S S, WRIGHT N T, HUMPHREY J D. Phenomenological evolution equations for heat-induced shrinkage of acollagenous tissue[J]. IEEE Transactions on Biomedical Engineering, 1998, 45(10): 1234-1240. doi: 10.1109/10.720201
    [32]
    DIAZ-VALDES S H, LAVERNIA E J, WONG B. Mechanical behavior of cartilage during laser irradiation[C]//Laser-Tissue Interaction : Photochemical, Photothermal, and Photomechanical. San Jose, CA, United States, 2001, 4257: 192-197.
    [33]
    CHAE Y S, AGUILAR G, LAVERNIA E J, et al. Characterization of temperature dependent mechanical behavior of cartilage[J]. Lasers in Surgery and Medicine, 2003, 32(4): 271-278. doi: 10.1002/lsm.10167
    [34]
    AKSAN A, MCGRATH J J. Thermomechanical analysis of soft-tissue thermotherapy[J]. Journal of Biomechanical Engineering, 2003, 125(5): 700-708. doi: 10.1115/1.1614816
    [35]
    AGAH R, GANDJBAKHCHE A H, MOTAMEDI M, et al. Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration[J]. IEEE Transactions on Biomedical Engineering, 1996, 43(8): 839-846. doi: 10.1109/10.508546
    [36]
    SCHWARZMAIER H J, YAROSLAVSKY A N, TERENJI A, et al. Changes in the optical properties of laser-coagulated and thermally coagulated bovine myocardium[C]//Laser-Tissue Interaction . San Jose, CA, United States, 1998, 3254: 361-365.
    [37]
    JUN J H, HARRIS J L, HUMPHREY J D, et al. Effect of thermal damage and biaxial loading on the optical properties of a collagenous tissue[J]. Journal of Biomechanical Engineering, 2003, 125(4): 540-548. doi: 10.1115/1.1591202
    [38]
    LENNOX F G. Shrinkage of collagen[J]. Biochimica et Biophysica Acta, 1949, 3: 170-187. doi: 10.1016/0006-3002(49)90090-6
    [39]
    CHACHRA D, GRATZER P F, PEREIRA C A, et al. Effect of applied uniaxial stress on rate and mechanical effects of cross-linking in tissue-derived biomaterials[J]. Biomaterials, 1996, 17(19): 1865-1875. doi: 10.1016/0142-9612(95)00305-3
    [40]
    HARRIS J L, WELLS P B, HUMPHREY J D. Altered mechanical behavior of epicardium due to isothermal heating under biaxial isotonic loads[J]. Journal of Biomechanical Engineering, 2003, 125(3): 381-388. doi: 10.1115/1.1567754
    [41]
    WELLS P B, HARRIS J L, HUMPHREY J D. Altered mechanical behavior of epicardium under isothermal biaxial loading[J]. Journal of Biomechanical Engineering, 2004, 126(4): 492-497. doi: 10.1115/1.1785807
    [42]
    OZAWA T. Kinetic analysis of derivative curves in thermal analysis[J]. Journal of Thermal Analysis, 1970, 2: 301-324. doi: 10.1007/BF01911411
    [43]
    MILES C A, BURJANADZE T V, BAILEY A J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry[J]. Journal of Molecular Biology, 1995, 245(4): 437-446. doi: 10.1006/jmbi.1994.0035
    [44]
    XU F, LU T J. Introduction to Skin Biothermomechanics and Thermal Pain[M]. New York: Science Press, 2011.
    [45]
    LIU H, LI M, OUYANG C, et al. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors[J]. Small, 2018, 14(36): 1801711. doi: 10.1002/smll.201801711
    [46]
    LI Y, HUANG G, ZHANG X, et al. Magnetic hydrogels and their potential biomedical applications[J]. Advanced Functional Materials, 2013, 23(6): 660-672. doi: 10.1002/adfm.201201708
    [47]
    LIN M, LUO Z Y, BAI B F, et al. Fluid dynamics analysis of shear stress on nerve endings in dentinal microtubule: a quantitative interpretation of hydrodynamic theory for dental pain[J]. Journal of Mechanics in Medicine and Biology, 2011, 11(1): 205-219. doi: 10.1142/S0219519411003983
    [48]
    LIU Y, LIU S, LI M, et al. Quantification of ureteral pain sensation induced by kidney stone[J]. Journal of Applied Mechanics, 2023, 90(8): 081003. doi: 10.1115/1.4062222
    [49]
    SU L, WANG M, YIN J, et al. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale[J]. Acta Biomaterialia, 2023, 155: 423-435. doi: 10.1016/j.actbio.2022.11.009
    [50]
    ISOMURSU A, PARK K Y, HOU J, et al. Directed cell migration towards softer environments[J]. Nature Materials, 2022, 21(9): 1081-1090. doi: 10.1038/s41563-022-01294-2
    [51]
    CHEN X, TI F, LI M, et al. Theory of fluid saturated porous media with surface effects[J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104392. doi: 10.1016/j.jmps.2021.104392
    [52]
    杨进, 谢守志, 刘嘉, 等. 神经内镜第三脑室底造瘘术治疗Chiari畸形Ⅰ型合并脑积水的疗效及机制研究[J]. 中华神经外科杂志, 2023, 39(12): 1222-1228. doi: 10.3760/cma.j.cn112050-20230625-00181

    YANG Jin, XIE Shouzhi, LIU Jia, et al. Study on the therapeutic effect and mechanism of endoscopic third ventriculostomy in the treatment of Chiari malformation type Ⅰ with hydrocephalus[J]. Chinese Journal of Neurosurgery, 2023, 39(12): 1222-1228. (in Chinese) doi: 10.3760/cma.j.cn112050-20230625-00181
    [53]
    HU Y, JIA Y, WANG S, et al. An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions[J]. Advanced Healthcare Materials, 2023, 12(1): 2201594. doi: 10.1002/adhm.202201594
    [54]
    郭卉, 贺昱昇, 刘梦洁, 等. 肿瘤力医学[J]. 中华肿瘤杂志, 2024, 46(6): 536-548.

    GUO Hui, HE Yusheng, LIU Mengjie, et al. Tumor mechanomedicine[J]. Chinese Journal of Oncology, 2024, 46(6): 536-548. (in Chinese)
    [55]
    LIU S, LI Y, HONG Y, et al. Mechanotherapy in oncology: targeting nuclear mechanics and mechanotransduction[J]. Advanced Drug Delivery Reviews, 2023, 194: 114722. doi: 10.1016/j.addr.2023.114722
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (378) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return