Volume 45 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LIN Shujuan, GUO Yaohua, QI Bing, LIU Shaobao. Ultrasonic Mechanotherapeutics[J]. Applied Mathematics and Mechanics, 2024, 45(6): 787-802. doi: 10.21656/1000-0887.450092
Citation: LIN Shujuan, GUO Yaohua, QI Bing, LIU Shaobao. Ultrasonic Mechanotherapeutics[J]. Applied Mathematics and Mechanics, 2024, 45(6): 787-802. doi: 10.21656/1000-0887.450092

Ultrasonic Mechanotherapeutics

doi: 10.21656/1000-0887.450092
  • Received Date: 2024-04-09
  • Rev Recd Date: 2024-04-30
  • Publish Date: 2024-06-01
  • The ultrasound, as one of the non-invasive intervention or regulation measures in mechanotherapy, has attracted much attention. The methods, effects and action mechanisms of 4 types of ultrasounds for tissues/cells, namely, the high-frequency high-intensity ultrasound, the low-frequency high-intensity ultrasound, the low-frequency low-intensity ultrasound and the high-frequency low-intensity ultrasound were reviewed, and the emerging ultrasound therapeutic instrumentations were introduced. Then the future development trends of ultrasonic mechanotherapeutics were discussed. This review helps to promote the technical progress and clinical application of ultrasound mechanotherapy in tumor treatment, neurologic diseases (such as Alzheimer's disease and Parkinson's disease) treatment and so on.

  • (Contributed by LIU Shaobao, M. AMM Editorial Board)
  • loading
  • [1]
    CHOWDHURY F, HUANG B, WANG N. Cytoskeletal prestress: the cellular hallmark in mechanobiology and mechanomedicine[J]. Cytoskeleton (Hoboken), 2021, 78(6): 249-276. doi: 10.1002/cm.21658
    [2]
    ZHANG J, REINHART-KING C A. Targeting tissue stiffness in metastasis: mechanomedicine improves cancer therapy[J]. Cancer Cell, 2020, 37(6): 754-755. doi: 10.1016/j.ccell.2020.05.011
    [3]
    季葆华. 生命系统中的力化耦合定量机制与力医学路径初探[J]. 医用生物力学, 2023, 38(3): 433-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202303003.htm

    JI Baohua. Mechano-chemical coupling in living organisms and possible road map of mechanomedicine[J]. Journal of Medical Biomechanics, 2023, 38(3): 433-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202303003.htm
    [4]
    郭卉, 贺昱昇, 刘梦洁, 等. 肿瘤力医学[J]. 中华肿瘤杂志, 2024, 46(6): 536-548.

    GUO Hui, HE Yusheng, LIU Mengjie, et al. Tumor mechanomedicine[J]. Chinese Journal of Oncology, 2024, 46(6): 536-548. (in Chinese)
    [5]
    KATIYAR A, OSBORN J, DASBANERJEE M, et al. Inhibition of human breast cancer cell proliferation by low-intensity ultrasound stimulation[J]. Journal of Ultrasound in Medicine, 2020, 39(10): 2043-2052. doi: 10.1002/jum.15312
    [6]
    CHENG D B, ZHANG X H, CHEN Y, et al. Ultrasound-activated cascade effect for synergistic orthotopic pancreatic cancer therapy[J]. iScience, 2020, 23(6): 101144. doi: 10.1016/j.isci.2020.101144
    [7]
    KARAKATSANI M E, WANG S, SAMIOTAKI G, et al. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease[J]. Journal of Control Release, 2019, 303: 289-301. doi: 10.1016/j.jconrel.2019.03.030
    [8]
    SHINDO T, SHIMOKAWA H. Therapeutic angiogenesis with sound waves[J]. Annals of Vascular Diseases, 2020, 13(2): 116-125. doi: 10.3400/avd.ra.20-00010
    [9]
    ARUMUGHAM S, NARAYAN S K, AGHORAM R. Effect of continuous 2 MHz transcranial ultrasound as an adjunct to tenecteplase thrombolysis in acute anterior circulation ischemic stroke patients: an open labeled non-randomized clinical trial[J]. Journal of Thrombosis and Thrombolysis, 2024.
    [10]
    张子程, 胡建辉, 杨依林, 等. 低强度脉冲超声在肌肉骨骼疾病中的研究进展[J]. 第二军医大学学报, 2020, 41(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD202002013.htm

    ZHANG Zicheng, HU Jianhui, YANG Yilin, et al. Research progress of low-intensity pulsed ultrasound in the treatment of musculoskeletal diseases[J]. Academic Journal of Second Military Medical University, 2020, 41(2): 194-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD202002013.htm
    [11]
    MITTELSTEIN D R, YE J, SCHIBBER E F, et al. Selective ablation of cancer cells with low intensity pulsed ultrasound[J]. Applied Physics Letters, 2020, 116(1): 1-5.
    [12]
    NELSON T R, FOWLKES J B, ABRAMOWICZ J S, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist[J]. Journal of Ultrasound in Medecine, 2009, 28(2): 139-150. doi: 10.7863/jum.2009.28.2.139
    [13]
    STRUNK H M, HENSELER J, RAUCH M, et al. Clinical use of high-intensity focused ultrasound (HIFU) for tumor and pain reduction in advanced pancreatic cancer[J]. Rofo, 2016, 188(7): 662-670. doi: 10.1055/s-0042-105517
    [14]
    WORLIKAR T, ZHANG M, GANGULY A, et al. Impact of histotripsy on development of intrahepatic metastases in a rodent liver tumor model[J]. Cancers (Basel), 2022, 14(7): 1612. doi: 10.3390/cancers14071612
    [15]
    MESSAS E, IJSSELMUIDEN A, TRIFUNOVIĆ-ZAMAKLAR D, et al. Treatment of severe symptomatic aortic valve stenosis using non-invasive ultrasound therapy: a cohort study[J]. The Lancet, 2023, 402(10419): 2317-2325. doi: 10.1016/S0140-6736(23)01518-0
    [16]
    MESSAS E, RÉMOND M C, GOUDOT G, et al. Feasibility and safety of non-invasive ultrasound therapy (NIUT) on an porcine aortic valve[J]. Physics in Medecine and Biology, 2020, 65(21): 215004. doi: 10.1088/1361-6560/aba6d3
    [17]
    MESSAS E, IJSSELMUIDEN A, GOUDOT G, et al. Feasibility and performance of noninvasive ultrasound therapy in patients with severe symptomatic aortic valve stenosis: a first-in-human study[J]. Circulation, 2021, 143(9): 968-970. doi: 10.1161/CIRCULATIONAHA.120.050672
    [18]
    郭芳, 胡兵. 低频超声的应用基础研究进展[J]. 声学技术, 2012, 31(2): 198-203. doi: 10.3969/j.issn1000-3630.2012.02.016

    GUO Fang, HU Bing. Basic and applied research on low-frequency ultrasound: an overview[J]. Technical Acoustics, 2012, 31(2): 198-203. (in Chinese) doi: 10.3969/j.issn1000-3630.2012.02.016
    [19]
    AZAGURY A, AMAR-LEWIS E, YUDILEVITCH Y, et al. Ultrasound effect on cancerous versus non-cancerous cells[J]. Ultrasound in Medecine & Biology, 2016, 42(7): 1560-1567.
    [20]
    BERGMAN E, GOLDBART R, TRAITEL T, et al. Cell stiffness predicts cancer cell sensitivity to ultrasound as a selective superficial cancer therapy[J]. Bioengineering & Translation Medecine, 2021, 6(3): e10226.
    [21]
    ARNOLD L, HENDRICKS-WENGER A, COUTERMARSH-OTT S, et al. Histotripsy ablation of bone tumors: feasibility study in excised canine osteosarcoma tumors[J]. Ultrasound in Medecine & Biology, 2021, 47(12): 3435-3446.
    [22]
    LEGON W, SATO T F, OPITZ A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Nature Neuroscience, 2014, 17(2): 322-329. doi: 10.1038/nn.3620
    [23]
    LIPSMAN N, MENG Y, BETHUNE A J, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nature Communications, 2018, 9(1): 2336. doi: 10.1038/s41467-018-04529-6
    [24]
    VLAISAVLJEVICH E, OWENS G, LUNDT J, et al. Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model[J]. Ultrasound in Medecine & Biology, 2017, 43(6): 1237-1251.
    [25]
    WORLIKAR T, VLAISAVLJEVICH E, GERHARDSON T, et al. Histotripsy for non-invasive ablation of hepatocellular carcinoma (HCC) tumor in a subcutaneous xenograft murine model[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI, USA: IEEE, 2018.
    [26]
    VIDAL-JOVE J, SERRES X, VLAISAVLJEVICH E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study[J]. International Journal of Hyperthermia, 2022, 39(1): 1115-1123. doi: 10.1080/02656736.2022.2112309
    [27]
    LEINENGA G, TO X V, BODEA L G, et al. Scanning ultrasound-mediated memory and functional improvements do not require amyloid-β reduction[J]. Molecular Psychiatry, 2024. DOI: 10.1038/s41380-024-02509-5.
    [28]
    陈旖旎, 白文坤, 胡兵. 低频低能量超声联合微泡对前列腺细胞的影响[J]. 声学技术, 2015, 34(4): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201504010.htm

    CHEN Yini, BAI Wenkun, HU Bing. The effect of low-frequency ultrasound combined with microbubbles on human prostate cells[J]. Technical Acoustics, 2015, 34(4): 333-337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201504010.htm
    [29]
    LEJBKOWICZ F, SALZBERG S. Distinct sensitivity of normal and malignant cells to ultrasound in vitro[J]. Environ Health Perspect, 1997, 105(S6): 1575-1578.
    [30]
    SINGH A, TIJORE A, MARGADANT F, et al. Enhanced tumor cell killing by ultrasound after microtubule depolymerization[J]. Bioengineering & Translations Medecine, 2021, 6(3): e10233.
    [31]
    TIJORE A, MARGADANT F, YAO M, et al. Ultrasound-mediated mechanical forces selectively kill tumor cells[Z]. 2020. DOI: 10.1101/2020.10.09.332726.
    [32]
    HETTINGA J K, LYONS B, BALKARAN J, et al. Cavitation-mediated transcutaneous delivery of protein and nucleotide-based antigen for rapid high-level immune responses[J]. Advanced Therapeutics, 2023, 6(12): 2300102. doi: 10.1002/adtp.202300102
    [33]
    XU R S, WU X M, XIONG Z Q. Low-intensity ultrasound directly modulates neural activity of the cerebellar cortex[J]. Brain Stimulation, 2023, 16(3): 918-926. doi: 10.1016/j.brs.2023.05.012
    [34]
    XIAN Q, QIU Z, MURUGAPPAN S, et al. Modulation of deep neural circuits with sonogenetics[J]. Proceedings of National Academy of Sciences of the United States of America, 2023, 120(22): e2220575120. doi: 10.1073/pnas.2220575120
    [35]
    CHOU T, DECKERSBACH T, GUERIN B, et al. Transcranial focused ultrasound of the amygdala modulates fear network activation and connectivity[J]. Brain Stimulation, 2024, 17(2): 312-320. doi: 10.1016/j.brs.2024.03.004
    [36]
    RIIS T, FELDMAN D, LOSSER A, et al. Device for multifocal delivery of ultrasound into deep brain regions in humans[J]. IEEE Transactions on Biomed Engineering, 2024, 71(2): 660-668. doi: 10.1109/TBME.2023.3313987
    [37]
    陈畅, 张金鹏, 彭洁, 等. 低强度脉冲式超声波治疗老年冠心病心绞痛患者的疗效及对心率变异性的影响[J/OL]. 中国医学前沿杂志(电子版), 2023, 15(4): 44-49[2024-04-30]. https://rs.yiigle.com/cmaid/1458466.

    CHEN Chang, ZHANG Jinpeng, PENG Jie, et al. Efficacy of low-intensity pulsed ultrasound therapy on heart rate variability in elderly patients with coronary heart disease[J/OL]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15(4): 44-49[2024-04-30]. https://rs.yiigle.com/cmaid/1458466. (in Chinese)
    [38]
    PRABHAKAR A, BANERJEE R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach[J]. ACS Omega, 2019, 4(13): 15567-15580. doi: 10.1021/acsomega.9b01924
    [39]
    ZHANG J, LIU H, DU X, et al. Increasing of blood-brain tumor barrier permeability through transcellular and paracellular pathways by microbubble-enhanced diagnostic ultrasound in a C6 glioma model[J]. Frontiers in Neuroscience, 2017, 11: 86.
    [40]
    ATKINS T J, DUCK F A. Heating caused by selected pulsed Doppler and physiotherapy ultrasound beams measured using thermal test objects[J]. European Journal of Ultrasound, 2003, 16(3): 243-252. doi: 10.1016/S0929-8266(02)00079-4
    [41]
    罗显文, 李明星. 低强度脉冲超声可缓解膝骨关节炎疼痛与修复关节软骨损伤[J]. 中国组织工程研究, 2019, 23(3): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF201903006.htm

    LUO Xianwen, LI Mingxing. Low-intensity pulsed ultrasound can alleviate knee osteoarthritis pain and promote articular cartilage repair[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(3): 348-353. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF201903006.htm
    [42]
    LEJBKOWICZ F, ZWIRAN M, SALZBERG S. The response of normal and malignant cells to ultrasound in vitro[J]. Ultrasound in Medecine & Biology, 1993, 19(1): 75-82.
    [43]
    ZHANG M, ZHANG S, SHI J, et al. Cell mechanical responses to subcellular perturbations generated by ultrasound and targeted microbubbles[J]. Acta Biomater, 2023, 155: 471-481. doi: 10.1016/j.actbio.2022.11.017
    [44]
    金婷婷, 蒋天安, 郑树森, 等. 惰性气体微泡联合低频低强度超声辐照对人胰腺癌PANC-1细胞抑癌作用的实验研究[J]. 临床超声医学杂志, 2022, 24(7): 481-484. doi: 10.3969/j.issn.1008-6978.2022.07.002

    JIN Tingting, JIANG Tian'an, ZHENG Shusen, et al. Experimental study on the anti-cancer effects of inert gas microbubbles combined with low frequency and intensity ultrasound on human pancreatic cancer PANC-1 cells[J]. Journal of Clinical Ultrasound in Medecine, 2022, 24(7): 481-484. (in Chinese) doi: 10.3969/j.issn.1008-6978.2022.07.002
    [45]
    LIAO B, GUAN M, TAN Q, et al. Low-intensity pulsed ultrasound inhibits fibroblast-like synoviocyte proliferation and reduces synovial fibrosis by regulating Wnt/β-catenin signaling[J]. Journal of Orthopaedic Translation, 2021, 30: 41-50. doi: 10.1016/j.jot.2021.08.002
    [46]
    VAFAIE A, RAVESHI M R, DEVENDRAN C, et al. Making immotile sperm motile using high-frequency ultrasound[J]. Science Advance, 2024, 10(7): eadk2864.
    [47]
    RIZZITELLI S, GIUSTETTO P, FALETTO D, et al. The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model[J]. Journal of Controlled Release, 2016, 230: 57-63. doi: 10.1016/j.jconrel.2016.03.040
    [48]
    LI Y, AN H, WANG X, et al. Ultrasound-triggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer[J]. Nano Research, 2018, 11(2): 1038-1056. doi: 10.1007/s12274-017-1719-8
    [49]
    SHEN S, LI Y, XIAO Y, et al. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion[J]. Biomaterials, 2018, 181: 293-306. doi: 10.1016/j.biomaterials.2018.07.030
    [50]
    HOU X, JING J, JIANG Y, et al. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice[J]. Nature Communications, 2024, 15(1): 2253. doi: 10.1038/s41467-024-46461-y
    [51]
    FAN W Y, CHEN Y M, WANG Y F, et al. L-type calcium channel modulates low-intensity pulsed ultrasound-induced excitation in cultured hippocampal neurons[J]. Neuroscience Bulletin, 2024. DOI: 10.1007/s12264-024-01186-2.
    [52]
    LEI H, XIN H, GUAN R, et al. Low-intensity pulsed ultrasound improves erectile function in streptozotocin-induced type Ⅰ diabetic rats[J]. Urology, 2015, 86(6): 1241.e11-1241.e18
    [53]
    YUSOFF F M, NAKASHIMA A, KAJIKAWA M, et al. Therapeutic myogenesis induced by ultrasound exposure in a volumetric skeletal muscle loss injury model[J]. The American Journal of Sports Medicine, 2023, 51(13): 3554-3566. doi: 10.1177/03635465231195850
    [54]
    王京, 孙国海, 徐杨, 等. 低强度脉冲式超声波治疗勃起功能障碍的疗效评价[J]. 现代泌尿外科杂志, 2023, 28(11): 936-941. doi: 10.3969/j.issn.1009-8291.2023.11.005

    WANG Jing, SUN Guohai, XU Yang, et al. Efficacy of low intensity pulsed ultrasound in the treatment of erectile dysfunction[J]. Journal of Modern Urology, 2023, 28(11): 936-941. (in Chinese) doi: 10.3969/j.issn.1009-8291.2023.11.005
    [55]
    CARPENTIER A, STUPP R, SONABEND A M, et al. Repeated blood-brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase Ⅰ/Ⅱ clinical trial[J]. Nature Communications, 2024, 15(1): 1650. doi: 10.1038/s41467-024-45818-7
    [56]
    ZHONG T, YI H, GOU J, et al. A wireless battery-free eye modulation patch for high myopia therapy[J]. Nature Communications, 2024, 15(1): 1766. doi: 10.1038/s41467-024-46049-6
    [57]
    AZIZI M, SAXENA M, WANG Y, et al. Endovascular ultrasound renal denervation to treat hypertension: the RADIANCE Ⅱ randomized clinical trial[J]. JAMA, 2023, 329(8): 651-661. doi: 10.1001/jama.2023.0713
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (156) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return