Volume 45 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
ZHANG Xiaoqing, WANG Jialin, YI Zhijian, ZHANG Tuo, WANG Min. 3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161
Citation: ZHANG Xiaoqing, WANG Jialin, YI Zhijian, ZHANG Tuo, WANG Min. 3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161

3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method

doi: 10.21656/1000-0887.450161
  • Received Date: 2024-05-31
  • Rev Recd Date: 2024-07-04
  • Publish Date: 2024-12-01
  • Based on the specified stress method, a new spatial finite element formulation for concrete cracking was derived according to the linear elasticity theory. This formulation was used to create a calculation program with the C++ language. The accuracy of the proposed cracking algorithm was validated through 3 numerical examples, where the theoretical results were compared with the ABAQUS XFEM calculations. Beyond conventional cracking algorithms, the proposed cracking algorithm has the advantage that once the stress at the cracking integration point is specified as zero (in the cracking state), it will remain zero in subsequent calculations. There is no need for an iterative process to adjust it to zero, which means significant reduction of the number of iterations and the amount of data processing required in each iteration. In comparison to the ABAQUS XFEM algorithm, which is limited to the 1st-order elements, the proposed cracking algorithm can utilize the 2nd-order elements for crack calculation, and allows for a more accurate determination of the cracked regions and states under the same computational conditions. This work provides a new approach and algorithm for commercial finite element software to conduct more refined crack calculations with the 2nd-order elements.
  • (Contributed by YI Zhijian, M.AMM Editorial Board)
  • loading
  • [1]
    赵超. 基于刚体弹簧法的钢筋混凝土结构破坏过程模拟方法[D]. 北京: 中国矿业大学(北京), 2018: 1.

    ZHAO Chao. Simulation method of failure process of reinforced concrete structure based on rigid body spring method[D]. Beijing: China University of Mining & Technology, Beijing, 2018: 1. (in Chinese)
    [2]
    NGO D, SCORDELIS A. Nonlinear analysis of reinforced concrete beams[J]. Journal of the American Concrete Insitute, 1967, 64(3): 152-163.
    [3]
    RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344. doi: 10.1016/0029-5493(68)90066-6
    [4]
    HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [5]
    BAŽANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177. doi: 10.1007/BF02486267
    [6]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [7]
    MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [8]
    AGHAJANZADEH S M, MIRZABOZORG H. Concrete fracture process modeling by combination of extended finite element method and smeared crack approach[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 306-319. doi: 10.1016/j.tafmec.2019.03.012
    [9]
    SAGERESAN N, DRATHI R, ANJALI P S. Numerical analysis of concrete fracture[J]. International Journal of Damage Mechanics, 2010, 19(5): 559-573. doi: 10.1177/1056789509102121
    [10]
    GRAVES R H, DERUCHER K N. Interface smeared crack model analysis of concrete dams in earthquakes[J]. Journal of Engineering Mechanics, 1987, 113(11): 1678-1693. doi: 10.1061/(ASCE)0733-9399(1987)113:11(1678)
    [11]
    BAŽANT Z P, LIN F B. Nonlocal smeared cracking model for concrete fracture[J]. Journal of Structural Engineering, 1988, 114(11): 2493-2510. doi: 10.1061/(ASCE)0733-9445(1988)114:11(2493)
    [12]
    DAHLBLOM O, OTTOSEN N S. Smeared crack analysis using generalized fictitious crack model[J]. Journal of Engineering Mechanics, 1990, 116(1): 55-76. doi: 10.1061/(ASCE)0733-9399(1990)116:1(55)
    [13]
    ČERVENKA J, PAPANIKOLAOU V K. Three dimensional combined fracture-plastic material model for concrete[J]. International Journal of Plasticity, 2008, 24(12): 2192-2220. doi: 10.1016/j.ijplas.2008.01.004
    [14]
    BROUJERDIAN V, KAZEMI M T. Smeared rotating crack model for reinforced concrete membrane elements[J]. ACI Structural Journal, 2010, 107(4): 411-418.
    [15]
    HARIRI-ARDEBILI M A, SEYED-KOLBADI S M, MIRZABOZORG H. A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects[J]. Structural Engineering and Mechanics, 2013, 48(1): 17-39. doi: 10.12989/sem.2013.48.1.017
    [16]
    HARIRI-ARDEBILI M A, SEYED-KOLBADI S M. Seismic cracking and instability of concrete dams: smeared crack approach[J]. Engineering Failure Analysis, 2015, 52: 45-60. doi: 10.1016/j.engfailanal.2015.02.020
    [17]
    EDALAT-BEHBAHANI A, BARROS J A O, VENTURA-GOUVEIA A. Three dimensional plastic-damage multidirectional fixed smeared crack approach for modelling concrete structures[J]. International Journal of Solids and Structures, 2017, 115: 104-125.
    [18]
    RIMKUS A, CERVENKA V, GRIBNIAK V, et al. Uncertainty of the smeared crack model applied to RC beams[J]. Engineering Fracture Mechanics, 2020, 233: 107088. doi: 10.1016/j.engfracmech.2020.107088
    [19]
    TEIXEIRA M, BERNARDO L. Evaluation of smeared constitutive laws for tensile concrete to predict the cracking of RC beams under torsion with smeared truss model[J]. Materials, 2021, 14(5): 1260. doi: 10.3390/ma14051260
    [20]
    聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67.

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67. (in Chinese)
    [21]
    SIRICO A, MICHELINI E, BERNARDI P, et al. Simulation of the response of shrunk reinforced concrete elements subjected to short-term loading: a bi-dimensional numerical approach[J]. Engineering Fracture Mechanics, 2017, 174: 64-79. doi: 10.1016/j.engfracmech.2016.11.020
    [22]
    MOËS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833. doi: 10.1016/S0013-7944(01)00128-X
    [23]
    UNGER J F, ECKARDT S, KÖNKE C. Modelling of cohesive crack growth in concrete structures with the extended finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41/44): 4087-4100.
    [24]
    方修君, 金峰, 王进廷. 用扩展有限元方法模拟混凝土的复合型开裂过程[J]. 工程力学, 2007, 24(S1): 46-52.

    FANG Xiujun, JIN Feng, WANG Jinting. Simulation of mixed-mode fracture of concrete using extended finite element method[J]. Engineering Mechanics, 2007, 24(S1): 46-52. (in Chinese)
    [25]
    IBRAHIMBEGOVIC A, BOULKERTOUS A, DAVENNE L, et al. Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[J]. International Journal for Numerical Methods in Engineering, 2010, 83(4): 452-481. doi: 10.1002/nme.2838
    [26]
    CONTRAFATTO L, CUOMO M, FAZIO F. An enriched finite element for crack opening and rebar slip in reinforced concrete members[J]. International Journal of Fracture, 2012, 178(1): 33-50.
    [27]
    杨涛, 邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模拟[J]. 浙江大学学报(工学版), 2013, 47(3): 495-501.

    YANG Tao, ZOU Daoqin. Numerical simulation of crack growth of reinforced concrete beam based on XFEM[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(3): 495-501. (in Chinese)
    [28]
    DU X L, JIN L, MA G W. Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method[J]. International Journal of Damage Mechanics, 2014, 23(7): 872-898. doi: 10.1177/1056789513516028
    [29]
    JAVANMARDI M R, MAHERI M R. Extended finite element method and anisotropic damage plasticity for modelling crack propagation in concrete[J]. Finite Elements in Analysis and Design, 2019, 165: 1-20. doi: 10.1016/j.finel.2019.07.004
    [30]
    FARON A, ROMBACH G A. Simulation of crack growth in reinforced concrete beams using extended finite element method[J]. Engineering Failure Analysis, 2020, 116: 104698. doi: 10.1016/j.engfailanal.2020.104698
    [31]
    HAGHANI M, NEYA B N, AHMADI M T, et al. A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method[J]. Engineering Failure Analysis, 2022, 132: 105835. doi: 10.1016/j.engfailanal.2021.105835
    [32]
    庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012.

    ZHUANG Zhuo, LIU Zhanli, CHENG Binbin, et al. Extended Finite Element Method[M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
    [33]
    SAGARESAN N. Modeling fracture of concrete with a simplified meshless discrete crack method[J]. KSCE Journal of Civil Engineering, 2012, 16(3): 417-425. doi: 10.1007/s12205-012-1480-1
    [34]
    MEGURO K, HAKUNO M. Fracture analyses of concrete structures by the modified distinct element method[J]. Structural Engineering/Earthquake Engineering, 1989, 6(2): 283-294.
    [35]
    PEARCE C J, THAVALINGAM A, LIAO Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 283-298.
    [36]
    YANG S K, CAO M S, REN X H, et al. 3D crack propagation by the numerical manifold method[J]. Computers & Structures, 2018, 194: 116-129.
    [37]
    王家林, 张俊波, 何琳, 等. 一类指定应力问题的变分原理与应用[J]. 应用数学和力学, 2021, 42(4): 331-341. doi: 10.21656/1000-0887.410173

    WANG Jialin, ZHANG Junbo, HE Lin, et al. A variational principle and applications for a class of specified stress problems[J]. Applied Mathematics and Mechanics, 2021, 42(4): 331-341. (in Chinese) doi: 10.21656/1000-0887.410173
    [38]
    江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2005: 217-218.

    JIANG Jianjing, LU Xinzheng, YE Lieping. Finite Element Analysis of Concrete Structures[M]. Beijing: Tsinghua University Press, 2005: 217-218. (in Chinese)
    [39]
    周元德, 张楚汉, 金峰. 混凝土开裂的三维非线性数值模拟[J]. 清华大学学报(自然科学版), 2003, 43(11): 1542-1545.

    ZHOU Yuande, ZHANG Chuhan, JIN Feng. Three-dimensional nonlinear numerical model for concrete fracture analysis[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(11): 1542-1545. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (73) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return