Citation: | DING Yi, WU Weitao, FENG Feng, LI Shulei, YAN Hongbin. Topology Review and Convective Heat Transfer Comparison of 3D Lattice Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184 |
[1] |
李勇. 超临界碳氢燃料流动传热特性及其强化机理研究[D]. 西安: 西北工业大学, 2021.
LI Yong. Study on heat transfer characteristics and strengthening mechanism of supercritical hydrocarbon fuel[D]. Xi'an: Northwestern Polytechnical University, 2021. (in Chinese)
|
[2] |
张凯, 吴引江, 刘高建, 等. 高孔隙率金属多孔材料的制备技术与应用[J]. 中国材料进展, 2023, 42(10): 814-825.
ZHANG Kai, WU Yingjiang, LIU Gaojian, et al. Preparation technology and application of metal porous materials with high porosity[J]. Materials China, 2023, 42(10): 814-825. (in Chinese)
|
[3] |
YAN H B, WU W T, ZHAO Z Y, et al. Review and comparison of turbulent convective heat transfer in state-of-the-art 3D truss periodic cellular structures[J]. Applied Thermal Engineering, 2023, 235: 121450. doi: 10.1016/j.applthermaleng.2023.121450
|
[4] |
张永存. 多孔材料传热特性分析与散热结构优化设计[D]. 大连: 大连理工大学, 2008.
ZHANG Yongcun. Heat transfer characteristic analysis and heat dissipation structure optimization design of porous materials[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
|
[5] |
严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434.
YAN Jinghao, LI Jie, LI Yiming, et al. Numerical simulation of thermal storage performance of composite phase change cell based on gradient porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. (in Chinese)
|
[6] |
何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212
HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. (in Chinese) doi: 10.21656/1000-0887.440212
|
[7] |
卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004
LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Adcances in Mechanics, 2006, 36(4): 517-535. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.004
|
[8] |
MEKKI B S, LANGER J, LYNCH S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121002. doi: 10.1016/j.ijheatmasstransfer.2021.121002
|
[9] |
FENG S S, LI M Z, JOO J H, et al. Thermomechanical properties of brazed wire-woven bulk Kagome cellular metals for multifunctional applications[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 66-74. doi: 10.2514/1.49434
|
[10] |
FERRARI L, BARBATO M, ESSER B, et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles[J]. Composite Structures, 2016, 154: 61-68. doi: 10.1016/j.compstruct.2016.07.043
|
[11] |
LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754. doi: 10.1016/j.applthermaleng.2021.116754
|
[12] |
KAUR I, AIDER Y, NITHYANANDAM K, et al. Thermal-hydraulic performance of additively manufactured lattices for gas turbine blade trailing edge cooling[J]. Applied Thermal Engineering, 2022, 211: 118461. doi: 10.1016/j.applthermaleng.2022.118461
|
[13] |
YAN H B, MEW T, LEE M G, et al. Thermofluidic characteristics of a porous ventilated brake disk[J]. Journal of Heat Transfer, 2015, 137(2): 022601. doi: 10.1115/1.4028864
|
[14] |
YAN H B, ZHANG Q C, LU T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016, 107: 39-55. doi: 10.1016/j.ijthermalsci.2016.03.026
|
[15] |
黄安坤, 温耀杰, 张百成, 等. 增材制造金属点阵结构性能研究进展[J]. 航空制造技术, 2023, 66(11): 90-101.
HUANG Ankun, WEN Yaojie, ZHANG Baicheng, et al. Research progress on properties of metal lattice structures in additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11): 90-101. (in Chinese)
|
[16] |
杨伟东, 李浩南, 王媛媛, 等. 面向增材制造的非均匀点阵结构综述[J/OL]. 机械科学与技术, 2023[2024-07-12].
YANG Weidong, LI Haonan, WANG Yuanyuan, et al. A review of heterogeneous lattice structures for additive manufacturing[J/OL]. Mechanical Science and Technology for Aerosapce Engineering, 2023[2024-07-12].
|
[17] |
RAZANI A, PAQUETTE J W, MONTOYA B, et al. A thermal model for calculation of heat transfer enhancement by porous metal inserts[J]. Journal of Enhanced Heat Transfer, 2001, 8: 411-420. doi: 10.1615/JEnhHeatTransf.v8.i6.50
|
[18] |
INAYAT A, FREUND H, ZEISER T, et al. Determining the specific surface area of ceramic foams: the tetrakaidecahedra model revisited[J]. Chemical Engineering Science, 2011, 66(6): 1179-1188. doi: 10.1016/j.ces.2010.12.031
|
[19] |
KOOISTRA G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14): 4229-4237. doi: 10.1016/j.actamat.2004.05.039
|
[20] |
LI M, WU L, MA L, WANG B, et al. Mechanical response of all-composite pyramidal lattice truss core sandwich structures[J]. Journal of Materials Science & Technology, 2011, 27(6): 570-576.
|
[21] |
REN X, XIAO L, HAO Z. Multi-property cellular material design approach based on the mechanical behaviour analysis of the reinforced lattice structure[J]. Materials & Design, 2019, 174: 117785.
|
[22] |
HYUN S, TORQUATO S. Optimal and manufacturable two-dimentional, Kagome-like cellular solids[J]. Journal of Materials Research Society, 2001, 17: 137-144.
|
[23] |
DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 1747-1769. doi: 10.1016/S0022-5096(01)00010-2
|
[24] |
YUN S, KWON J, LEE D C, et al. Heat transfer and stress characteristics of additive manufactured FCCZ lattice channel using thermal fluid-structure interaction model[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119187. doi: 10.1016/j.ijheatmasstransfer.2019.119187
|
[25] |
ZHANG Q C, HAN Y B, CHEN C Q, et al. Ultralight X-type lattice sandwich structure (Ⅰ): concept, fabrication and experimental characterization[J]. Science in China(Series E): Technological Sciences, 2009, 52(8): 2147-2154. doi: 10.1007/s11431-009-0219-9
|
[26] |
LV G X, JENSEN E, SHEN C T, et al. Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2020, 3(1): 259-267.
|
[27] |
TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5-D braided ceramic matrix composite with thin-wall structure[J]. Applied Sciences, 2019, 9(5): 875. doi: 10.3390/app9050875
|
[28] |
SWEET J N, ROTH E P, MOSS M. Thermal conductivity of Inconel 718 and 304 stainless steel[J]. International Journal of Thermophysics, 1987, 8(5): 593-606. doi: 10.1007/BF00503645
|
[29] |
DIXIT T, NITHIARASU P, KUMAR S. Numerical evaluation of additively manufactured lattice architectures for heat sink applications[J]. International Journal of Thermal Sciences, 2021, 159: 106607. doi: 10.1016/j.ijthermalsci.2020.106607
|
[30] |
WANG Y, DING G F. Numerical analysis of heat transfer in a manifold microchannel heat sink with high efficient copper heat spreader[J]. Microsystem Technologies, 2007, 14(3): 389-395.
|
[31] |
JIN X, SHEN B B, YAN H B, et al. Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and pyramidal-lattice cores[J]. International Journal of Heat and Mass Transfer, 2018, 127: 268-282. doi: 10.1016/j.ijheatmasstransfer.2018.07.087
|
[32] |
ZHANG X Q, JIN X, XIE G N, et al. Thermo-fluidic comparison between sandwich panels with tetrahedral lattice cores fabricated by casting and metal sheet folding[J]. Energies, 2017, 10(7): 906. doi: 10.3390/en10070906
|
[33] |
SHEN B B, YAN H B, XUE H Q, et al. The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels[J]. Applied Thermal Engineering, 2018, 142: 79-88. doi: 10.1016/j.applthermaleng.2018.06.080
|
[34] |
YAN H B, ZHANG Q C, CHEN W J, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J]. Applied Thermal Engineering, 2020, 166: 114687. doi: 10.1016/j.applthermaleng.2019.114687
|
[35] |
JOO J H, KANG K J, KIM T, et al. Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5658-5662.
|
[36] |
KIM T, HODSON H P, LU T J. Pressure loss and heat transfer mechanisms in a lattice-frame structured heat exchanger[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2004, 218(11): 1321-1336. doi: 10.1177/095440620421801104
|
[37] |
YAN H B, YANG X H, LU T J, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core[J]. Applied Thermal Engineering, 2017, 127: 1293-1304. doi: 10.1016/j.applthermaleng.2017.08.081
|
[38] |
YAN H B, ZHANG Q C, LU T J, et al. A lightweight X-type metallic lattice in single-phase forced convection[J]. International Journal of Heat and Mass Transfer, 2015, 83: 273-283. doi: 10.1016/j.ijheatmasstransfer.2014.11.061
|