Citation: | ZHAN Chunxiao, LI Xiaobao, WANG Meiqin. Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200 |
[1] |
WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J]. MRS Bulletin, 2018, 43(12): 922-927. doi: 10.1557/mrs.2018.263
|
[2] |
WANG Z L. Progress in piezotronics and piezo-phototronics[J]. Advanced Materials, 2012, 24(34): 4632-4646. doi: 10.1002/adma.201104365
|
[3] |
ZHANG G, SHEN S. Analysis of electromechanical couplings and nonlinear carrier transport in flexoelectric semiconductors[J]. Journal of Physics D: Applied Physics, 2023, 56(32): 325102. doi: 10.1088/1361-6463/accd04
|
[4] |
WANG G, LIU J, LIU X, et al. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber[J]. Journal of Applied Physics, 2018, 124(9): 094502. doi: 10.1063/1.5048571
|
[5] |
SUN L, ZHANG Z, GAO C, et al. Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer[J]. Journal of Applied Physics, 2021, 129(24): 244102. doi: 10.1063/5.0050947
|
[6] |
LIANG C, ZHANG C, CHEN W, et al. Static buckling of piezoelectric semiconductor fibers[J]. Materials Research Express, 2020, 6(12): 125919. doi: 10.1088/2053-1591/ab663b
|
[7] |
DAI X, ZHU F, QIAN Z, et al. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration[J]. Nano Energy, 2018, 43: 22-28. doi: 10.1016/j.nanoen.2017.11.002
|
[8] |
HE J H, HSIN C L, LIU J, et al. Piezoelectric gated diode of a single ZnO nanowire[J]. Advanced Materials, 2007, 19(6): 781-784. doi: 10.1002/adma.200601908
|
[9] |
WANG X, ZHOU J, SONG J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano Letters, 2006, 6(12): 2768-2772. doi: 10.1021/nl061802g
|
[10] |
FEI P, YEH P H, ZHOU J, et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire[J]. Nano Letters, 2009, 9(10): 3435-3439. doi: 10.1021/nl901606b
|
[11] |
ZHOU J, GU Y, FEI P, et al. Flexible piezotronic strain sensor[J]. Nano Letters, 2008, 8(9): 3035-3040. doi: 10.1021/nl802367t
|
[12] |
ZHANG J, ZHOU J. Humidity-dependent piezopotential properties of zinc oxide nanowires: insights from atomic-scale modelling[J]. Nano Energy, 2018, 50: 298-307. doi: 10.1016/j.nanoen.2018.05.054
|
[13] |
LAO C S, KUANG Q, WANG Z L, et al. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors[J]. Applied Physics Letters, 2007, 90(26): 262107. doi: 10.1063/1.2748097
|
[14] |
WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
|
[15] |
SONG J, ZHOU J, WANG Z L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment[J]. Nano Letters, 2006, 6(8): 1656-1662. doi: 10.1021/nl060820v
|
[16] |
GAO Y, WANG Z L. Electrostatic potential in a bent piezoelectric nanowire. the fundamental theory of nanogenerator and nanopiezotronics[J]. Nano Letters, 2007, 7(8): 2499-2505. doi: 10.1021/nl071310j
|
[17] |
DENG Q, KAMMOUN M, ERTURK A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids and Structures, 2014, 51(18): 3218-3225. doi: 10.1016/j.ijsolstr.2014.05.018
|
[18] |
MOURA A G, ERTURK A. Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics[J]. Journal of Applied Physics, 2017, 121(6): 064110. doi: 10.1063/1.4976069
|
[19] |
QU Y, JIN F, YANG J. Buckling of flexoelectric semiconductor beams[J]. Acta Mechanica, 2021, 232(7): 2623-2633. doi: 10.1007/s00707-021-02960-3
|
[20] |
LEE D, NOH T W. Giant flexoelectric effect through interfacial strain relaxation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1977): 4944-4957. doi: 10.1098/rsta.2012.0200
|
[21] |
LEE D. Flexoelectricity in thin films and membranes of complex oxides[J]. APL Materials, 2020, 8(9): 090901. doi: 10.1063/5.0020212
|
[22] |
MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Physical Review B, 2008, 77(12): 125424. doi: 10.1103/PhysRevB.77.125424
|
[23] |
MAJDOUB M S, SHARMA P, ÇAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78(12): 121407. doi: 10.1103/PhysRevB.78.121407
|
[24] |
ZHOU Z D, YANG C P, SU Y X, et al. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect[J]. Smart Materials and Structures, 2017, 26(9): 095025. doi: 10.1088/1361-665X/aa7936
|
[25] |
ZHANG Z, JIANG L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity[J]. Journal of Applied Physics, 2014, 116(13): 134308. doi: 10.1063/1.4897367
|
[26] |
鲁双, 李东波, 陈晶博, 等. 考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用[J]. 应用数学和力学, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
LU Shuang, LI Dongbo, CHEN Jingbo, et al. The Mindlin-Medick plate theory and its application under flexoelectricity and temperature effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. (in Chinese) doi: 10.21656/1000-0887.440017
|
[27] |
ZHAO M, LIU X, FAN C, et al. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient[J]. Journal of Applied Physics, 2020, 127(8): 085707. doi: 10.1063/1.5131388
|
[28] |
ZHAO M, NIU J, LU C, et al. Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires[J]. Journal of Applied Physics, 2021, 129(16): 164301. doi: 10.1063/5.0038782
|
[29] |
FANG K, LI P, QIAN Z. Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity[J]. Acta Mechanica Solida Sinica, 2021, 34(5): 673-686. doi: 10.1007/s10338-021-00236-w
|
[30] |
WANG K F, WANG B L. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization[J]. Nanotechnology, 2018, 29(25): 255405. doi: 10.1088/1361-6528/aab970
|
[31] |
QU Y, JIN F, YANG J. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors[J]. Journal of Applied Physics, 2020, 127(19): 194502. doi: 10.1063/5.0005124
|
[32] |
GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323. doi: 10.1007/BF00261375
|
[33] |
GURTIN M E, MURDOCH A I. Surface stress in solids[J]. International Journal of Solids and Structures, 1978, 14(6): 431-440. doi: 10.1016/0020-7683(78)90008-2
|
[34] |
STEIGMANN D J, OGDEN R W. Plane deformations of elastic solids with intrinsic boundary elasticity[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 1997, 453(1959): 853-877. doi: 10.1098/rspa.1997.0047
|
[35] |
CHHAPADIA P, MOHAMMADI P, SHARMA P. Curvature-dependent surface energy and implications for nanostructures[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(10): 2103-2115. doi: 10.1016/j.jmps.2011.06.007
|
[36] |
MOHAMMADI P, SHARMA P. Atomistic elucidation of the effect of surface roughness on curvature-dependent surface energy, surface stress, and elasticity[J]. Applied Physics Letters, 2012, 100(13): 133110-133113. doi: 10.1063/1.3695069
|
[37] |
LIANG X, HU S, SHEN S. Effects of surface and flexoelectricity on a piezoelectric nanobeam[J]. Smart Materials and Structures, 2014, 23(3): 035020. doi: 10.1088/0964-1726/23/3/035020
|
[38] |
周强, 张志纯, 龙志林, 等. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, et al. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
|
[39] |
WANG G F, FENG X Q. Effects of surface stresses on contact problems at nanoscale[J]. Journal of Applied Physics, 2007, 101(1): 013510. doi: 10.1063/1.2405127
|
[40] |
赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J]. 应用数学和力学, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151
ZHAO Jieyan, YANG Haibing. Surface effects on thermal stresses around the nanohole in thermoelectric material[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1311-1324. (in Chinese) doi: 10.21656/1000-0887.440151
|
[41] |
冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J]. 应用数学和力学, 2020, 41(4): 376-385. doi: 10.21656/1000-0887.400177
FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ radial multi cracks on the edge of a hole with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 376-385. (in Chinese) doi: 10.21656/1000-0887.400177
|
[42] |
YAO Y, CHEN S. Buckling behavior of nanowires predicted by a new surface energy density model[J]. Acta Mechanica, 2016, 227(7): 1799-1811. doi: 10.1007/s00707-016-1597-2
|
[43] |
WANG G F, FENG X Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects[J]. Journal of Physics D: Applied Physics, 2009, 42(15): 155411. doi: 10.1088/0022-3727/42/15/155411
|
[44] |
ANSARI R, SAHMANI S. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories[J]. International Journal of Engineering Science, 2011, 49(11): 1244-1255. doi: 10.1016/j.ijengsci.2011.01.007
|
[45] |
CHALLAMEL N, ELISHAKOFF I. Surface stress effects may induce softening: Euler-Bernoulli and Timoshenko buckling solutions[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44(9): 1862-1867. doi: 10.1016/j.physe.2012.05.019
|
[46] |
LIANG X, HU S, SHEN S. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity[J]. Smart Materials and Structures, 2015, 24(10): 105012. doi: 10.1088/0964-1726/24/10/105012
|
[47] |
ALIBEIGI B, BENI Y T, MEHRALIAN F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams[J]. The European Physical Journal Plus, 2018, 133(3): 133. doi: 10.1140/epjp/i2018-11954-7
|
[48] |
SAMANI M S E, BENI Y T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam[J]. Materials Research Express, 2018, 5(8): 085018. doi: 10.1088/2053-1591/aad2ca
|
[49] |
JI L W, YOUNG S J, FANG T H, et al. Buckling characterization of vertical ZnO nanowires using nanoindentation[J]. Applied Physics Letters, 2007, 90(3): 033109. doi: 10.1063/1.2431785
|
[50] |
RIAZ M, FULATI A, AMIN G, et al. Buckling and elastic stability of vertical ZnO nanotubes and nanorods[J]. Journal of Applied Physics, 2009, 106(3): 034309. doi: 10.1063/1.3190481
|
[51] |
ZHANG J, WANG C, ADHIKARI S. Fracture and buckling of piezoelectric nanowires subject to an electric field[J]. Journal of Applied Physics, 2013, 114(17): 174306. doi: 10.1063/1.4829277
|
[52] |
WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. Europhysics Letters, 2010, 91(5): 56007. doi: 10.1209/0295-5075/91/56007
|
[53] |
ZHANG Z, LIANG C, KONG D, et al. Dynamic buckling and free bending vibration of axially compressed piezoelectric semiconductor rod with surface effect[J]. International Journal of Mechanical Sciences, 2023, 238: 107823. doi: 10.1016/j.ijmecsci.2022.107823
|
[54] |
WANG Z, HU Q, ZHAO J, et al. Failure mode transformation of ZnO nanowires under uniaxial compression: from phase transition to buckling[J]. Nanotechnology, 2019, 30(37): 375702. doi: 10.1088/1361-6528/ab269e
|
[55] |
FAN S, LIANG Y, XIE J, et al. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part Ⅰ: linearized analysis[J]. Nano Energy, 2017, 40: 82-87. doi: 10.1016/j.nanoen.2017.07.049
|
[56] |
TIMOSHENKO S. Theory of Elastic Stability[M]. 2nd ed. New York: McGraw-Hill, 1961.
|