Volume 46 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
CHEN Yeming, LI Yaning. Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217
Citation: CHEN Yeming, LI Yaning. Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217

Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations

doi: 10.21656/1000-0887.450217
Funds:

The National Science Foundation of China(11801276)

  • Received Date: 2024-07-17
  • Rev Recd Date: 2024-10-10
  • Available Online: 2025-12-05
  • The effects of the inhomogeneity on the existence and finite time blow-up of solutions to a class of time-space fractional pseudo-parabolic equations were analyzed. Firstly, the local existence of the mild solution was obtained with the fixed-point theorem. By means of the test function method, the solutions' finite-time blow-up was educed under certain conditions. The global existence of the solution to the equation was proved under suitable initial data and inhomogeneous terms. The findings extend the corresponding solution results of integral-order pseudo-parabolic equations, but differ from those of the time-space fractional pseudo-parabolic equations with zero inhomogeneous terms, and show the effects of inhomogeneous terms on the existence and blow-up of the solutions.
  • loading
  • [2]LI L, LIU J G, WANG L Z. Cauchy problems for Keller-Segel type time-space fractional diffusion equation[J].Journal of Differential Equations,2018,265(3): 1044-1096.
    DE ANDRADE B, VIANA A. Abstract Volterra integrodifferential equations with applications to parabolic models with memory[J].Mathematische Annalen,2017,369: 1131-1175.
    [3]SUN Y F, ZENG Z, SONG J. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation[J].Numerical Algebra,Control and Optimization,2020,10(2): 157-164.
    [4]METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports,2000,339(1): 1-77.
    [5]崔建譞, 石成鑫, 柳冕, 等. 具有Robin边界条件的时间分数阶扩散方程的源项辨识问题研究[J]. 应用数学和力学, 2022,43(11): 1303-1312.(CUI Jianxuan, SHI Chengxin, LIU Mian, et al. Source identification for the time-fractional diffusion equation with robin boundary conditions[J].Applied Mathematics and Mechanics,2022,43(11): 1303-1312. (in Chinese))
    [6]吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022,43(2): 215-223.(WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J].Applied Mathematics and Mechanics,2022,43(2): 215-223. (in Chinese))
    [7]袁小雨, 冯晓莉, 张云. 一种迭代正则化方法求解一类同时带有两个扰动数据的反向问题[J]. 应用数学和力学, 2023,44(10): 1260-1271.(YUAN Xiaoyu, FENG Xiaoli, ZHANG Yun. An iterative regularization method for solving backward problems with 2 perturbation data[J].Applied Mathematics and Mechanics,2023,44(10): 1260-1271. (in Chinese))
    [8]ZENNIR K, MIYASITA T. Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory[J].Alexandria Engineering Journal,2020,59(2): 957-964.
    [9]CAO Y, YIN J X, WANG C P. Cauchy problems of semilinear pseudo-parabolic equations[J].Journal of Differential Equations,2009,246(12): 4568-4590.
    [10]ZHOU J. Fujita exponent for an inhomogeneous pseudoparabolic equation[J].Rocky Mountain Journal of Mathematics,2020,50(3):1125-1137.
    [11]BORIKHANOV M B, TOREBEK B T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation[J].Applied Mathematics Letters,2022,134: 108366.
    [12]JIN L Y, LI L, FANG S M. The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation[J].Computers & Mathematics With Applications,2017,73(10): 2221-2232.
    [13]ZHANG Q G, SUN H R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation[J].Topological Methods in Nonlinear Analysis,2015,46: 69-92.
    [14]TUAN N H, AU V V, XU R Z. Semilinear Caputo time-fractional pseudo-parabolic equations[J].Communications on Pure and Applied Analysis,2021,20 (2): 583-621.
    [15]LI Y N, YANG Y T. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation[J].AIMS Mathematics,2023,8(8): 17827-17859.
    [16]SAMKO S G, KILBAS A A, MARICHEY O I.Fractional Integrals and Derivatives:Theory and Applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
    [17]SERRIN J, ZOU H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[J].Acta Mathematica,2002,189: 79-142.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return