ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282
Citation: ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282

Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates

doi: 10.21656/1000-0887.450282
  • Received Date: 2024-10-21
  • Rev Recd Date: 2024-11-05
  • Publish Date: 2024-11-01
  • Porous dielectric metamaterials exhibit spatially non-uniform strain distribution due to internal pores with strain gradients particularly pronounced at the pore edges, leading to significant flexoelectric coupling effects. As a result, porous dielectric metamaterials represent a class of smart materials characterized by flexoelectric-type electromechanical coupling, showing great potential for various applications. A mixed finite element method (M-FEM) was employed to investigate the propagation characteristics of bending waves in porous flexoelectric metamaterial plates, aimed at the effects of pore sizes, pore numbers, and gradient distribution parameters of pore diameters within unit cells on the elastic wave bandgap structure. The results reveal that, the flexoelectric coupling effect enhances the effective stiffness of the structure, and thus increases the bending wave bandgap frequency; as the pore size increases, the bending wave bandgap frequency will decrease and the bandgap width will narrow; as the number of pores increases, the bandgap frequency will gradually decrease, and the bandgap will exhibit opening and closing phenomena; for porous dielectric metamaterial plates with gradient distributions of pore sizes, the larger the gradient index is, the wider the bending wave bandgap will be.
  • (Contributed by ZHANG Chunli, M.AMM Youth Editorial Board)
  • 致谢: 本文作者衷心感谢浣江实验室专项项目对本文的资助.
  • [1]
    段东升. 智能材料在航空工业中的应用和发展建议[J]. 科技创新导报, 2019, 16(5): 12, 14.

    DUAN Dongsheng. Suggestions for the application and development of smart materials in the aviation industry[J]. Science and Technology Innovation Herald, 2019, 16(5): 12, 14. (in Chinese)
    [2]
    LU C X, HSIEH M T, HUANG Z F, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review[J]. Engineering, 2022, 17: 44-63. doi: 10.1016/j.eng.2021.12.023
    [3]
    SUN H X, ZHANG S Y, SHUI X J. A tunable acoustic diode made by a metal plate with periodical structure[J]. Applied Physics Letters, 2012, 100(10): 103507. doi: 10.1063/1.3693374
    [4]
    LIU Z F, WU B, HE C F. The properties of optimal two-dimensional phononic crystals with different material contrasts[J]. Smart Materials and Structures, 2016, 25(9): 095036. doi: 10.1088/0964-1726/25/9/095036
    [5]
    CAO Y J, YUN G H, LIANG X X, et al. Band structures of two-dimensional magnonic crystals with different shapes and arrangements of scatterers[J]. Journal of Physics D: Applied Physics, 2010, 43(30): 305005. doi: 10.1088/0022-3727/43/30/305005
    [6]
    LI Y M, KONG P, BI R G, et al. Valley topological states in double-surface periodic elastic phonon crystal plates[J]. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [7]
    HUANG Y, ZHANG C L, CHEN W Q. Elastic wave band structures and defect states in a periodically corrugated piezoelectric plate[J]. Journal of Applied Mechanics, 2014, 81(8): 081005. doi: 10.1115/1.4027487
    [8]
    SHEN N, CONG Y, GU S T, et al. Design of phononic crystals using superposition of defect and gradient-index for enhanced wave focusing[J]. Smart Materials and Structures, 2024, 33(8): 085034. doi: 10.1088/1361-665X/ad62cb
    [9]
    LI F L, ZHANG C Z, WANG Y S. Band structure analysis of phononic crystals with imperfect interface layers by the BEM[J]. Engineering Analysis With Boundary Elements, 2021, 131: 240-257. doi: 10.1016/j.enganabound.2021.06.024
    [10]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [11]
    MEHANEY A, AHMED A M. Locally resonant phononic crystals at low frequencies based on porous SiC multilayer[J]. Scientific Reports, 2019, 9(1): 14767. doi: 10.1038/s41598-019-51329-z
    [12]
    YIP K L S, JOHN S. Sound trapping and waveguiding in locally resonant viscoelastic phononic crystals[J]. Scientific Reports, 2023, 13(1): 15313. doi: 10.1038/s41598-023-42452-z
    [13]
    倪安辰, 石志飞, 孟庆娟. 针对交通环境减振的超表面型波屏障[J]. 工程力学, 2024, 41(S1): 317-325.

    NI Anchen, SHI Zhifei, MENG Qingjuan. Metasurface wave barriers for ambient vibration mitigation[J]. Engineering Mechanics, 2024, 41(S1): 317-325. (in Chinese)
    [14]
    王倚天, 赵建雷, 张铭凯, 等. 含机构位移模式的超材料低频宽带波动控制[J]. 科学通报, 2022, 67(12): 1326-1336.

    WANG Yitian, ZHAO Jianlei, ZHANG Mingkai, et al. Mechanism-based metamaterials for low-frequency broadband wave control[J]. Chinese Science Bulletin, 2022, 67(12): 1326-1336. (in Chinese)
    [15]
    FAN S W, ZHAO S D, CAO L Y, et al. Reconfigurable curved metasurface for acoustic cloaking and illusion[J]. Physical Review B, 2020, 101(2): 024104. doi: 10.1103/PhysRevB.101.024104
    [16]
    袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望[J]. 力学学报, 2021, 53(8): 2101-2116.

    YUAN Yi, YOU Zhenyu, CHEN Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116. (in Chinese)
    [17]
    WANG Y Z, LI F M, KISHIMOTO K, et al. Elastic wave band gaps in magnetoelectroelastic phononic crystals[J]. Wave Motion, 2009, 46(1): 47-56. doi: 10.1016/j.wavemoti.2008.08.001
    [18]
    WANG Z, ZHANG Q, ZHANG K, et al. Tunable digital metamaterial for broadband vibration isolation at low frequency[J]. Advanced Materials, 2016, 28(44): 9857-9861. doi: 10.1002/adma.201604009
    [19]
    JIANG S, DAI L, CHEN H, et al. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. doi: 10.1007/s10483-017-2171-7
    [20]
    LV X F, XU S F, HUANG Z L, et al. A shape memory alloy-based tunable phononic crystal beam attached with concentrated masses[J]. Physics Letters A, 2020, 384(2): 126056. doi: 10.1016/j.physleta.2019.126056
    [21]
    WU B, JIANG W, JIANG J, et al. Wave manipulation in intelligent metamaterials: recent progress and prospects[J]. Advanced Functional Materials, 2024, 34(29): 2316745. doi: 10.1002/adfm.202316745
    [22]
    RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. doi: 10.1016/j.jeurceramsoc.2014.12.013
    [23]
    ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3 based piezoelectrics: fundamentals, current status, and perspectives[J]. Applied Physics Reviews, 2017, 4(4): 041305. doi: 10.1063/1.4990046
    [24]
    GUO Q, LI F, XIA F, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range[J]. Journal of Materiomics, 2021, 7(4): 683-692. doi: 10.1016/j.jmat.2020.11.012
    [25]
    ZUBKO P, CATALAN G, TAGANTSEV A K. Flexoelectric effect in solids[J]. Annual Review of Materials Research, 2013, 43: 387-421. doi: 10.1146/annurev-matsci-071312-121634
    [26]
    申胜平, 梁旭, 邓谦. 挠曲电理论及应用[M]. 北京: 科学出版社, 2022.

    SHEN Shengping, LIANG Xu, DENG Qian. Flexural Electricity Theory and Its Application[M]. Beijing: Science Press, 2022. (in Chinese)
    [27]
    ZHUANG X, NGUYEN B H, NANTHAKUMAR S S, et al. Computational modeling of flexoelectricity: a review[J]. Energies, 2020, 13(6): 1326. doi: 10.3390/en13061326
    [28]
    张春利. 多铁性结构简化分析体系及其应用[D]. 杭州: 浙江大学, 2011.

    ZHANG Chunli. Simplifying analysis framework for multiferroic structures and the applications[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [29]
    陈少华, 王自强. 应变梯度理论进展[J]. 力学进展, 2003, 33(2): 207-216.

    CHEN Shaohua, WANG Ziqiang. Advances in strain gradient theory[J]. Advances in Mechanics, 2003, 33(2): 207-216. (in Chinese)
    [30]
    XU L, SHEN S P. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350015. doi: 10.1142/S1758825113500154
    [31]
    YAN D, WANG J, XIANG J, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator[J]. Science Advances, 2023, 9(2): eadc8845. doi: 10.1126/sciadv.adc8845
    [32]
    HE Z, ZHANG G, CHEN X, et al. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates[J]. International Journal of Mechanical Sciences, 2023, 239: 107892. doi: 10.1016/j.ijmecsci.2022.107892
    [33]
    DENG F, DENG Q, YU W, et al. Mixed finite elements for flexoelectric solids[J]. Journal of Applied Mechanics, 2017, 84(8): 081004. doi: 10.1115/1.4036939
    [34]
    MAO S, PUROHIT P K, ARAVAS N. Mixed finite-element formulations in piezoelectricity and flexoelectricity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2016, 472(2190): 20150879.
    [35]
    HE Z Z, ZHANG C L, ZHANG C Z, et al. programmable dielectric metamaterial plates via flexoelectricity and L-C circuits[J/OL]. [2024-11-05]. https://www.researchgate.net/publication/384121619_Programmable_Dielectric_Metamaterial_Plates_Via_Flexoelectricity_and_L-C_Circuits. DOI: 10.2139/ssrn.4960147.
    [36]
    YANG C C, TIAN X Y, LI D C, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material[J]. Journal of Materials Processing Technology, 2017, 248: 1-7. doi: 10.1016/j.jmatprotec.2017.04.027
    [37]
    MUHAMMAD G, ZHOU W J, LIM C W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves[J]. International Journal of Mechanical Sciences, 2019, 159: 359-372. doi: 10.1016/j.ijmecsci.2019.05.020
  • Relative Articles

    [1]ZHAN Chunxiao, LI Xiaobao, WANG Meiqin. Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200
    [2]TIAN Gengxin, CAO Shenghu, ZHANG Jian. Study on Mechanical Properties of Barbed Contact Metamaterials[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285
    [3]HAO Yihan, TIAN Xinpeng, DENG Qian. Interaction Between Flexoelectric Fields Associated With Microholes in Solids[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1381-1391. doi: 10.21656/1000-0887.450208
    [4]YANG Shasha, PENG Cong, MENG Han, SHEN Cheng. Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115
    [5]WANG Jingzhe, CHEN Baocai, ZHU Shaowei, CHEN Liming. Study on Energy Absorption Performances of Conical Negative Stiffness Metamaterials[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1172-1179. doi: 10.21656/1000-0887.440055
    [6]LU Shuang, LI Dongbo, CHEN Jingbo, XI Bo. The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
    [7]SUN Wenjing, WANG Yize. Active Control on Band Gap Properties and Interface Transmission of Elastic Waves in Piezoelectric Metamaterial Beams[J]. Applied Mathematics and Mechanics, 2022, 43(1): 14-25. doi: 10.21656/1000-0887.420125
    [8]LIANG Guanpo, FU Yuxin, LOU Benliang, XIE Yuxin. Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1221-1228. doi: 10.21656/1000-0887.420100
    [9]HU Ya-yuan. Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004
    [10]ZHOU Wei-jian, CHEN Wei-qiu. Surface Effect on Propagation of Surface Waves in a Dielectric Elastomer Half Space Subject to Biasing Fields[J]. Applied Mathematics and Mechanics, 2015, 36(2): 119-127. doi: 10.3879/j.issn.1000-0887.2015.02.001
    [11]SUN Shu-lei, MAO Jian-liang, PENG Xiong-qi. An Anisotropic Hyperelastic Constitutive Model With Fibre Bending Stiffness for Cord-Rubber Composites[J]. Applied Mathematics and Mechanics, 2014, 35(5): 471-477. doi: 10.3879/j.issn.1000-0887.2014.05.001
    [12]CHEN Qi-yong, HU Shao-wei, ZHANG Zi-ming. Research on the Vibration Property of the Beam on Elastic Foundation Based on the PCs Theory[J]. Applied Mathematics and Mechanics, 2014, 35(1): 29-38. doi: 10.3879/j.issn.1000-0887.2014.01.004
    [13]ZHU Zhi-wei, DENG Zi-chen. Effect of Poisson’s Ratio on Flexural Wave Propagation in Step-Beam[J]. Applied Mathematics and Mechanics, 2013, 34(3): 217-225. doi: 10.3879/j.issn.1000-0887.2013.03.001
    [14]MA Yu-li, CHEN Ji-wei, LIU Yong-quan, SU Xian-yue. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1392-1402. doi: 10.3879/j.issn.1000-0887.2012.12.002
    [15]S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer[J]. Applied Mathematics and Mechanics, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007
    [16]YANG Xiao, WEN Qun. Dynamic and Quasi-Static Bending of Saturated Poroelastic Timoshenko Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(8): 949-960. doi: 10.3879/j.issn.1000-0887.2010.08.008
    [17]Rajneesh Kumar, Meenakshi Panchal. Effect of Loose Bonding on Reflection and Transmission of Elastic Waves at Interface Between Elastic Solid and Micropolar Porous Cubic Crystal[J]. Applied Mathematics and Mechanics, 2010, 31(5): 573-584. doi: 10.3879/j.issn.1000-0887.2010.05.008
    [18]A. K. Vashishth, M. D. Sharma. Propagation of Plane Waves in Poroviscoelastic Anisotropic Media[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1037-1047.
    [19]CHENG Chang-jun, REN Jiu-sheng. Transversely Isotropic Hyper-Elastic Material Rectangular Plate With Voids Under a Uniaxial Extension[J]. Applied Mathematics and Mechanics, 2003, 24(7): 675-683.
    [20]Tang Ling, Liu Yin-zhong. Evolution of Slowly Modulated Wave Train on Porous Sea Bed[J]. Applied Mathematics and Mechanics, 1990, 11(1): 79-86.
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.8 %FULLTEXT: 23.8 %META: 68.6 %META: 68.6 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.1 %其他: 17.1 %其他: 0.3 %其他: 0.3 %Dallas: 0.3 %Dallas: 0.3 %Doylestown: 0.6 %Doylestown: 0.6 %Seattle: 0.3 %Seattle: 0.3 %上海: 2.5 %上海: 2.5 %兰州: 0.3 %兰州: 0.3 %北京: 2.2 %北京: 2.2 %南京: 0.3 %南京: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %常州: 0.8 %常州: 0.8 %常德: 0.3 %常德: 0.3 %广元: 0.3 %广元: 0.3 %广州: 1.1 %广州: 1.1 %张家口: 13.7 %张家口: 13.7 %成都: 0.3 %成都: 0.3 %扬州: 0.6 %扬州: 0.6 %杭州: 4.5 %杭州: 4.5 %武威: 0.3 %武威: 0.3 %武汉: 0.6 %武汉: 0.6 %温州: 0.3 %温州: 0.3 %漯河: 1.1 %漯河: 1.1 %石家庄: 1.1 %石家庄: 1.1 %绍兴: 0.3 %绍兴: 0.3 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %衢州: 0.3 %衢州: 0.3 %西宁: 22.4 %西宁: 22.4 %西安: 0.8 %西安: 0.8 %诺沃克: 6.4 %诺沃克: 6.4 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.3 %运城: 0.3 %郑州: 2.2 %郑州: 2.2 %重庆: 0.3 %重庆: 0.3 %长沙: 0.3 %长沙: 0.3 %阿什本: 0.3 %阿什本: 0.3 %其他其他DallasDoylestownSeattle上海兰州北京南京哈尔滨哥伦布天津太原常州常德广元广州张家口成都扬州杭州武威武汉温州漯河石家庄绍兴芒廷维尤衢州西宁西安诺沃克贵阳运城郑州重庆长沙阿什本

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (244) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return