Citation: | ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282 |
[1] |
段东升. 智能材料在航空工业中的应用和发展建议[J]. 科技创新导报, 2019, 16(5): 12, 14.
DUAN Dongsheng. Suggestions for the application and development of smart materials in the aviation industry[J]. Science and Technology Innovation Herald, 2019, 16(5): 12, 14. (in Chinese)
|
[2] |
LU C X, HSIEH M T, HUANG Z F, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review[J]. Engineering, 2022, 17: 44-63. doi: 10.1016/j.eng.2021.12.023
|
[3] |
SUN H X, ZHANG S Y, SHUI X J. A tunable acoustic diode made by a metal plate with periodical structure[J]. Applied Physics Letters, 2012, 100(10): 103507. doi: 10.1063/1.3693374
|
[4] |
LIU Z F, WU B, HE C F. The properties of optimal two-dimensional phononic crystals with different material contrasts[J]. Smart Materials and Structures, 2016, 25(9): 095036. doi: 10.1088/0964-1726/25/9/095036
|
[5] |
CAO Y J, YUN G H, LIANG X X, et al. Band structures of two-dimensional magnonic crystals with different shapes and arrangements of scatterers[J]. Journal of Physics D: Applied Physics, 2010, 43(30): 305005. doi: 10.1088/0022-3727/43/30/305005
|
[6] |
LI Y M, KONG P, BI R G, et al. Valley topological states in double-surface periodic elastic phonon crystal plates[J]. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
|
[7] |
HUANG Y, ZHANG C L, CHEN W Q. Elastic wave band structures and defect states in a periodically corrugated piezoelectric plate[J]. Journal of Applied Mechanics, 2014, 81(8): 081005. doi: 10.1115/1.4027487
|
[8] |
SHEN N, CONG Y, GU S T, et al. Design of phononic crystals using superposition of defect and gradient-index for enhanced wave focusing[J]. Smart Materials and Structures, 2024, 33(8): 085034. doi: 10.1088/1361-665X/ad62cb
|
[9] |
LI F L, ZHANG C Z, WANG Y S. Band structure analysis of phononic crystals with imperfect interface layers by the BEM[J]. Engineering Analysis With Boundary Elements, 2021, 131: 240-257. doi: 10.1016/j.enganabound.2021.06.024
|
[10] |
LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
|
[11] |
MEHANEY A, AHMED A M. Locally resonant phononic crystals at low frequencies based on porous SiC multilayer[J]. Scientific Reports, 2019, 9(1): 14767. doi: 10.1038/s41598-019-51329-z
|
[12] |
YIP K L S, JOHN S. Sound trapping and waveguiding in locally resonant viscoelastic phononic crystals[J]. Scientific Reports, 2023, 13(1): 15313. doi: 10.1038/s41598-023-42452-z
|
[13] |
倪安辰, 石志飞, 孟庆娟. 针对交通环境减振的超表面型波屏障[J]. 工程力学, 2024, 41(S1): 317-325.
NI Anchen, SHI Zhifei, MENG Qingjuan. Metasurface wave barriers for ambient vibration mitigation[J]. Engineering Mechanics, 2024, 41(S1): 317-325. (in Chinese)
|
[14] |
王倚天, 赵建雷, 张铭凯, 等. 含机构位移模式的超材料低频宽带波动控制[J]. 科学通报, 2022, 67(12): 1326-1336.
WANG Yitian, ZHAO Jianlei, ZHANG Mingkai, et al. Mechanism-based metamaterials for low-frequency broadband wave control[J]. Chinese Science Bulletin, 2022, 67(12): 1326-1336. (in Chinese)
|
[15] |
FAN S W, ZHAO S D, CAO L Y, et al. Reconfigurable curved metasurface for acoustic cloaking and illusion[J]. Physical Review B, 2020, 101(2): 024104. doi: 10.1103/PhysRevB.101.024104
|
[16] |
袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望[J]. 力学学报, 2021, 53(8): 2101-2116.
YUAN Yi, YOU Zhenyu, CHEN Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116. (in Chinese)
|
[17] |
WANG Y Z, LI F M, KISHIMOTO K, et al. Elastic wave band gaps in magnetoelectroelastic phononic crystals[J]. Wave Motion, 2009, 46(1): 47-56. doi: 10.1016/j.wavemoti.2008.08.001
|
[18] |
WANG Z, ZHANG Q, ZHANG K, et al. Tunable digital metamaterial for broadband vibration isolation at low frequency[J]. Advanced Materials, 2016, 28(44): 9857-9861. doi: 10.1002/adma.201604009
|
[19] |
JIANG S, DAI L, CHEN H, et al. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. doi: 10.1007/s10483-017-2171-7
|
[20] |
LV X F, XU S F, HUANG Z L, et al. A shape memory alloy-based tunable phononic crystal beam attached with concentrated masses[J]. Physics Letters A, 2020, 384(2): 126056. doi: 10.1016/j.physleta.2019.126056
|
[21] |
WU B, JIANG W, JIANG J, et al. Wave manipulation in intelligent metamaterials: recent progress and prospects[J]. Advanced Functional Materials, 2024, 34(29): 2316745. doi: 10.1002/adfm.202316745
|
[22] |
RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. doi: 10.1016/j.jeurceramsoc.2014.12.013
|
[23] |
ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3 based piezoelectrics: fundamentals, current status, and perspectives[J]. Applied Physics Reviews, 2017, 4(4): 041305. doi: 10.1063/1.4990046
|
[24] |
GUO Q, LI F, XIA F, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range[J]. Journal of Materiomics, 2021, 7(4): 683-692. doi: 10.1016/j.jmat.2020.11.012
|
[25] |
ZUBKO P, CATALAN G, TAGANTSEV A K. Flexoelectric effect in solids[J]. Annual Review of Materials Research, 2013, 43: 387-421. doi: 10.1146/annurev-matsci-071312-121634
|
[26] |
申胜平, 梁旭, 邓谦. 挠曲电理论及应用[M]. 北京: 科学出版社, 2022.
SHEN Shengping, LIANG Xu, DENG Qian. Flexural Electricity Theory and Its Application[M]. Beijing: Science Press, 2022. (in Chinese)
|
[27] |
ZHUANG X, NGUYEN B H, NANTHAKUMAR S S, et al. Computational modeling of flexoelectricity: a review[J]. Energies, 2020, 13(6): 1326. doi: 10.3390/en13061326
|
[28] |
张春利. 多铁性结构简化分析体系及其应用[D]. 杭州: 浙江大学, 2011.
ZHANG Chunli. Simplifying analysis framework for multiferroic structures and the applications[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
|
[29] |
陈少华, 王自强. 应变梯度理论进展[J]. 力学进展, 2003, 33(2): 207-216.
CHEN Shaohua, WANG Ziqiang. Advances in strain gradient theory[J]. Advances in Mechanics, 2003, 33(2): 207-216. (in Chinese)
|
[30] |
XU L, SHEN S P. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350015. doi: 10.1142/S1758825113500154
|
[31] |
YAN D, WANG J, XIANG J, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator[J]. Science Advances, 2023, 9(2): eadc8845. doi: 10.1126/sciadv.adc8845
|
[32] |
HE Z, ZHANG G, CHEN X, et al. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates[J]. International Journal of Mechanical Sciences, 2023, 239: 107892. doi: 10.1016/j.ijmecsci.2022.107892
|
[33] |
DENG F, DENG Q, YU W, et al. Mixed finite elements for flexoelectric solids[J]. Journal of Applied Mechanics, 2017, 84(8): 081004. doi: 10.1115/1.4036939
|
[34] |
MAO S, PUROHIT P K, ARAVAS N. Mixed finite-element formulations in piezoelectricity and flexoelectricity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2016, 472(2190): 20150879.
|
[35] |
HE Z Z, ZHANG C L, ZHANG C Z, et al. programmable dielectric metamaterial plates via flexoelectricity and L-C circuits[J/OL]. [2024-11-05].
|
[36] |
YANG C C, TIAN X Y, LI D C, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material[J]. Journal of Materials Processing Technology, 2017, 248: 1-7. doi: 10.1016/j.jmatprotec.2017.04.027
|
[37] |
MUHAMMAD G, ZHOU W J, LIM C W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves[J]. International Journal of Mechanical Sciences, 2019, 159: 359-372. doi: 10.1016/j.ijmecsci.2019.05.020
|