Volume 47 Issue 2
Feb.  2026
Turn off MathJax
Article Contents
ZHANG Yihao, JIANG Cuixiang, JIANG Xiaoyu. Thermal Shock Damage Analysis of Refractory Material Based on the DD-OSBPD Model[J]. Applied Mathematics and Mechanics, 2026, 47(2): 189-202. doi: 10.21656/1000-0887.450287
Citation: ZHANG Yihao, JIANG Cuixiang, JIANG Xiaoyu. Thermal Shock Damage Analysis of Refractory Material Based on the DD-OSBPD Model[J]. Applied Mathematics and Mechanics, 2026, 47(2): 189-202. doi: 10.21656/1000-0887.450287

Thermal Shock Damage Analysis of Refractory Material Based on the DD-OSBPD Model

doi: 10.21656/1000-0887.450287
  • Received Date: 2024-10-25
  • Rev Recd Date: 2025-03-17
  • Publish Date: 2026-02-01
  • A fully coupled thermal-mechanical model based on damage dependent ordinary state-based peridynamics (DD-OSBPD) was proposed. In this model, the new surface effects caused by crack damage due to bond breakage were considered, a bond damage correction factor was introduced and a secondary correction was made to the surface correction factor to enhance the computational accuracy of the peridynamics (PD) model at crack damage positions. Additionally, the OpenMP parallel computing technology was employed to implement the numerical calculations for this model. The thermal-mechanical coupling problem of a centrally cracked plate subjected to uniform tensile loading was simulated with the DD-OSBPD thermal-mechanical coupling model, the ordinary state-based peridynamic (OSBPD) thermal-mechanical coupling model and the finite element method, respectively. The results validate the effectiveness of the DD-OSBPD thermal-mechanical coupling model. With the DD-OSBPD thermal-mechanical coupling model, the crack damage propagation in ceramic plates at various quenching temperatures was simulated, and the impact of different quenching temperatures on the material's thermal shock resistance was investigated. Comparison between numerical simulations with experimental studies show the same crack propagation patterns in good agreement, which further confirms the correctness of the model.
  • loading
  • [1]
    李永全, 彭婷. 中国耐火材料行业发展状况与未来展望[J]. 耐火材料, 2022, 56(5): 435-439.

    LI Yongquan, PENG Ting. Development status and prospects of China's refractory industry[J]. Refractories, 2022, 56(5): 435-439. (in Chinese)
    [2]
    赵颐, 田晓耕. 基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应[J]. 应用数学和力学, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134

    ZHAO Yi, TIAN Xiaogeng. Thermomechanical responses of YSZ under ultrashort thermal shock based on the L-S generalized thermoelastic theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. (in Chinese) doi: 10.21656/1000-0887.430134
    [3]
    杨国欣, 郑世风, 李定玉, 等. 考虑损伤判据温度相关性的相场法模拟氧化铝热冲击裂纹扩展[J]. 应用数学和力学, 2022, 43(11): 1259-1267. doi: 10.21656/1000-0887.430133

    YANG Guoxin, ZHENG Shifeng, LI Dingyu, et al. Thermal shock crack propagation of alumina simulated with the phase-field method under temperature-dependent damage criteria[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1259-1267. (in Chinese) doi: 10.21656/1000-0887.430133
    [4]
    NAWAZ M, NAZIR U, OBAID ALHARBI S, et al. Thermal and solutal analysis in power law fluid under non-Fourier's diffusion conditions[J]. International Communications in Heat and Mass Transfer, 2021, 126: 105331. doi: 10.1016/j.icheatmasstransfer.2021.105331
    [5]
    LIU H, ZHANG K, SHAO S, et al. Numerical investigation on the mechanical properties of Australian strathbogie granite under different temperatures using discrete element method[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3719-3735. doi: 10.1007/s00603-019-01814-8
    [6]
    WANG F, KONIETZKY H. Thermal cracking in granite during a heating-cooling cycle up to 1 000℃: laboratory testing and real-time simulation[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1411-1428. doi: 10.1007/s00603-021-02740-4
    [7]
    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [8]
    MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
    [9]
    WANG H, GUO C, WANG F, et al. Peridynamics simulation of structural damage characteristics in rock sheds under rockfall impact[J]. Computers and Geotechnics, 2022, 143: 104625. doi: 10.1016/j.compgeo.2021.104625
    [10]
    ZHOU Z, LI Z, GAO C, et al. Peridynamic micro-elastoplastic constitutive model and its application in the failure analysis of rock masses[J]. Computers and Geotechnics, 2021, 132: 104037. doi: 10.1016/j.compgeo.2021.104037
    [11]
    周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668. doi: 10.21656/1000-0887.420150

    ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668. (in Chinese) doi: 10.21656/1000-0887.420150
    [12]
    OTERKUS S, MADENCI E, AGWAI A. Peridynamic thermal diffusion[J]. Journal of Computational Physics, 2014, 265: 71-96. doi: 10.1016/j.jcp.2014.01.027
    [13]
    OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 1-23.
    [14]
    D'ANTUONO P, MORANDINI M. Thermal shock response via weakly coupled peridynamic thermo-mechanics[J]. International Journal of Solids and Structures, 2017, 129: 74-89. doi: 10.1016/j.ijsolstr.2017.09.010
    [15]
    CHEN W, GU X, ZHANG Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking[J]. Engineering Fracture Mechanics, 2021, 242: 107463. doi: 10.1016/j.engfracmech.2020.107463
    [16]
    GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J]. Continuum Mechanics and Thermodynamics, 2019, 31(4): 907-937. doi: 10.1007/s00161-018-0691-1
    [17]
    HE D, HUANG D, WU L, et al. Investigation on thermal failure of functionally graded materials using fully coupled thermo-mechanical peridynamics[J]. Composite Structures, 2023, 305: 116454. doi: 10.1016/j.compstruct.2022.116454
    [18]
    SILLING S A. Fragmentation modeling with EMU[R]. Albuquerque, New Mexico, USA: Computational Phyics Department, Sandia National Laboratories, 2005.
    [19]
    SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17/18): 1526-1535.
    [20]
    BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of Peridynamic Modeling[M]. New York: Chapman and Hall/CRC, 2016.
    [21]
    HA Y D, BOBARU F. Characteristics of dynamic brittle fracture captured with peridynamics[J]. Engineering Fracture Mechanics, 2011, 78(6): 1156-1168. doi: 10.1016/j.engfracmech.2010.11.020
    [22]
    谭洋. 热冲击载荷下功能梯度材料的近场动力学模拟[D]. 武汉: 武汉理工大学, 2021.

    TAN Yang. Peridynamic simulation of functionally graded materials under thermal shock load[D]. Wuhan: Wuhan University of Technology, 2021. (in Chinese)
    [23]
    SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1
    [24]
    LI J, SONG F, JIANG C. A non-local approach to crack process modeling in ceramic materials subjected to thermal shock[J]. Engineering Fracture Mechanics, 2015, 133: 85-98.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (10) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return