| Citation: | ZHANG Yihao, JIANG Cuixiang, JIANG Xiaoyu. Thermal Shock Damage Analysis of Refractory Material Based on the DD-OSBPD Model[J]. Applied Mathematics and Mechanics, 2026, 47(2): 189-202. doi: 10.21656/1000-0887.450287 |
| [1] |
李永全, 彭婷. 中国耐火材料行业发展状况与未来展望[J]. 耐火材料, 2022, 56(5): 435-439.
LI Yongquan, PENG Ting. Development status and prospects of China's refractory industry[J]. Refractories, 2022, 56(5): 435-439. (in Chinese)
|
| [2] |
赵颐, 田晓耕. 基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应[J]. 应用数学和力学, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134
ZHAO Yi, TIAN Xiaogeng. Thermomechanical responses of YSZ under ultrashort thermal shock based on the L-S generalized thermoelastic theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. (in Chinese) doi: 10.21656/1000-0887.430134
|
| [3] |
杨国欣, 郑世风, 李定玉, 等. 考虑损伤判据温度相关性的相场法模拟氧化铝热冲击裂纹扩展[J]. 应用数学和力学, 2022, 43(11): 1259-1267. doi: 10.21656/1000-0887.430133
YANG Guoxin, ZHENG Shifeng, LI Dingyu, et al. Thermal shock crack propagation of alumina simulated with the phase-field method under temperature-dependent damage criteria[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1259-1267. (in Chinese) doi: 10.21656/1000-0887.430133
|
| [4] |
NAWAZ M, NAZIR U, OBAID ALHARBI S, et al. Thermal and solutal analysis in power law fluid under non-Fourier's diffusion conditions[J]. International Communications in Heat and Mass Transfer, 2021, 126: 105331. doi: 10.1016/j.icheatmasstransfer.2021.105331
|
| [5] |
LIU H, ZHANG K, SHAO S, et al. Numerical investigation on the mechanical properties of Australian strathbogie granite under different temperatures using discrete element method[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3719-3735. doi: 10.1007/s00603-019-01814-8
|
| [6] |
WANG F, KONIETZKY H. Thermal cracking in granite during a heating-cooling cycle up to 1 000℃: laboratory testing and real-time simulation[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1411-1428. doi: 10.1007/s00603-021-02740-4
|
| [7] |
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
|
| [8] |
MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
|
| [9] |
WANG H, GUO C, WANG F, et al. Peridynamics simulation of structural damage characteristics in rock sheds under rockfall impact[J]. Computers and Geotechnics, 2022, 143: 104625. doi: 10.1016/j.compgeo.2021.104625
|
| [10] |
ZHOU Z, LI Z, GAO C, et al. Peridynamic micro-elastoplastic constitutive model and its application in the failure analysis of rock masses[J]. Computers and Geotechnics, 2021, 132: 104037. doi: 10.1016/j.compgeo.2021.104037
|
| [11] |
周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668. doi: 10.21656/1000-0887.420150
ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668. (in Chinese) doi: 10.21656/1000-0887.420150
|
| [12] |
OTERKUS S, MADENCI E, AGWAI A. Peridynamic thermal diffusion[J]. Journal of Computational Physics, 2014, 265: 71-96. doi: 10.1016/j.jcp.2014.01.027
|
| [13] |
OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 1-23.
|
| [14] |
D'ANTUONO P, MORANDINI M. Thermal shock response via weakly coupled peridynamic thermo-mechanics[J]. International Journal of Solids and Structures, 2017, 129: 74-89. doi: 10.1016/j.ijsolstr.2017.09.010
|
| [15] |
CHEN W, GU X, ZHANG Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking[J]. Engineering Fracture Mechanics, 2021, 242: 107463. doi: 10.1016/j.engfracmech.2020.107463
|
| [16] |
GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J]. Continuum Mechanics and Thermodynamics, 2019, 31(4): 907-937. doi: 10.1007/s00161-018-0691-1
|
| [17] |
HE D, HUANG D, WU L, et al. Investigation on thermal failure of functionally graded materials using fully coupled thermo-mechanical peridynamics[J]. Composite Structures, 2023, 305: 116454. doi: 10.1016/j.compstruct.2022.116454
|
| [18] |
SILLING S A. Fragmentation modeling with EMU[R]. Albuquerque, New Mexico, USA: Computational Phyics Department, Sandia National Laboratories, 2005.
|
| [19] |
SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17/18): 1526-1535.
|
| [20] |
BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of Peridynamic Modeling[M]. New York: Chapman and Hall/CRC, 2016.
|
| [21] |
HA Y D, BOBARU F. Characteristics of dynamic brittle fracture captured with peridynamics[J]. Engineering Fracture Mechanics, 2011, 78(6): 1156-1168. doi: 10.1016/j.engfracmech.2010.11.020
|
| [22] |
谭洋. 热冲击载荷下功能梯度材料的近场动力学模拟[D]. 武汉: 武汉理工大学, 2021.
TAN Yang. Peridynamic simulation of functionally graded materials under thermal shock load[D]. Wuhan: Wuhan University of Technology, 2021. (in Chinese)
|
| [23] |
SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1
|
| [24] |
LI J, SONG F, JIANG C. A non-local approach to crack process modeling in ceramic materials subjected to thermal shock[J]. Engineering Fracture Mechanics, 2015, 133: 85-98.
|