Citation: | ZHENG Jingbo, ZHANG Ying, JIANG Wenlong, WEI Lin, CHI Xue, YI Wenzhao, LIU Lulu, CHEN Wei. Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment[J]. Applied Mathematics and Mechanics, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289 |
[1] |
陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2006: 548-551.
CHEN Guang. Analysis of Aeroengine Structure Design[M]. Beijing: Beihang University Press, 2006: 548-551. (in Chinese)
|
[2] |
United States Air Force. Engine structural integrity program: MIL2STD21783B[S]. USA: Department of Defense, 2002.
|
[3] |
中国民用航空局. 航空发动机适航规定: CCAR—33R2[S]. 北京: 中国民用航空局, 2016.
Civil Aviation Administration of China. Aviation engine air-worthiness regulations: CCAR—33R2[S]. Beijing: Civil Aviation Administration of China, 2016. (in Chinese)
|
[4] |
HOLMES M. Carbon fibre reinforced plastics market continues growth path[J]. Reinforced Plastics, 2013, 57 (6): 24-29. doi: 10.1016/S0034-3617(13)70186-3
|
[5] |
MARSH G. Aero engines lose weight thanks to composites[J]. Reinforced Plastics, 2012, 56 (6): 32-35. doi: 10.1016/S0034-3617(12)70146-7
|
[6] |
MAZUMDAR S. Composites Manufacturing: Materials, Product, and Process Engineering[M]. Boca Raton: CRC Press, 2001.
|
[7] |
沈尔明, 王志宏, 赵凤飞, 等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013, 56 (13): 92-95.
SHEN Erming, WANG Zhihong, ZHAO Fengfei, et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013, 56 (13): 92-95. (in Chinese)
|
[8] |
李佳楠, 姜亚明, 项赫, 等. 高性能纤维增强树脂基复合材料湿热老化研究进展[J]. 化工新型材料, 2024, 52 (1): 1-7.
LI Jianan, JIANG Yaming, XIANG He, et al. Research progress on the hygrothermal aging of high-performance fiber reinforced resin matrix composites[J]. New Chemical Materials, 2024, 52 (1): 1-7. (in Chinese)
|
[9] |
DEWHURST T B. The impact load on containment rings during a multiple blade shed in aircraft gas turbine engines[C]//Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Orlando, FL, USA: ASME, 1991.
|
[10] |
RICHARDSON I J, HYDE T M, BECKER A A, et al. A three-dimensional finite element investigation of the bolt stresses in an aero-engine Curvic coupling under a blade release condition[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214 (4): 231-245. doi: 10.1243/0954410001532033
|
[11] |
张伯熹, 宣海军, 吴荣仁. 航空发动机涡轮叶片包容模拟试验研究[J]. 机械工程师, 2006(10): 114-116.
ZHANG Boxi, XUAN Haijun, WU Rongren. Research on aero-engine turbine blade containment experiment[J]. Mechanical Engineer, 2006(10): 114-116. (in Chinese)
|
[12] |
古兴瑾. 复合材料层板高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2011.
GU Xingjin. Research on high velocity impact damage of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
|
[13] |
蔡雄峰. 复合材料层合板高速冲击损伤研究[D]. 天津: 中国民航大学, 2020.
CAI Xiongfeng. Research on high-speed impact damage of composite laminates[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese)
|
[14] |
何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27 (2): 295-300.
HE Qing, XUAN Haijun, LIU Lulu. Numerical analysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27 (2): 295-300. (in Chinese)
|
[15] |
杜长美. 三维四向编织复合材料湿热老化后低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.
DU Changmei. Study on low-velocity impact and residual compression properties of three-dimensional four-directions braided composites after damp-heat aging[D]. Harbin: Harbin University of Science and Technology, 2023. (in Chinese)
|
[16] |
MOKHTAR H, SICOT O, ROUSSEAU J, et al. The influence of ageing on the impact damage of carbon epoxy composites[J]. Procedia Engineering, 2011, 10 : 2615-2620. doi: 10.1016/j.proeng.2011.04.436
|
[17] |
HOSUR M V, JAIN K, CHOWDHURY F, et al. Low-velocity impact response of carbon/epoxy laminates subjected to cold-dry and cold-moist conditioning[J]. Composite Structures, 2007, 79 (2): 300-311. doi: 10.1016/j.compstruct.2006.11.011
|
[18] |
ZHANG C, BINIENDA W K, MORSCHER G N, et al. Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46 : 34-44. doi: 10.1016/j.compositesa.2012.10.006
|
[19] |
ATAS C, DOGAN A. An experimental investigation on the repeated impact response of glass/epoxy composites subjected to thermal ageing[J]. Composites Part B: Engineering, 2015, 75 : 127-134. doi: 10.1016/j.compositesb.2015.01.032
|
[20] |
徐凯龙. 循环湿热作用下三维编织复合材料力学性能与抗冲击性能研究[D]. 南京: 南京航空航天大学, 2018.
XU Kailong. Effect of cyclic hygrothermal aging on mechanical properties and impact resistance of three dimensional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
|
[21] |
LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204 : 645-657. doi: 10.1016/j.compstruct.2018.08.009
|
[22] |
惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35 (22): 161-168.
HUI Xulong, MU Rangke, BAI Chunyu, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35 (22): 161-168. (in Chinese)
|