| Citation: | ZHANG Dahai, ZHANG Shuai, LIU Shuoshuo, HOU Xiaohai, JIANG Yaoxin. Study on Vibration and Power Stability of Tandem Double PTC Cylinders Under Different Perturbations[J]. Applied Mathematics and Mechanics, 2026, 47(2): 203-218. doi: 10.21656/1000-0887.450338 |
| [1] |
BERNITSAS M M, RAGHAVAN K. Fluid motion energy converter: US7493759B2[P]. 2009-02-24.
|
| [2] |
丁林. 被动湍流控制下多柱体流致振动研究[D]. 重庆: 重庆大学, 2013.
DING Lin. Research on flow induced motion of multiple circular cylinder with passive turbulence control[D]. Chongqing: Chongqing University, 2013. (in Chinese)
|
| [3] |
朱红钧, 刘文丽, 高岳. 固定-铰接约束柔性管的涡激振动实验研究[J]. 应用数学和力学, 2023, 44(2): 141-151. doi: 10.21656/1000-0887.430320
ZHU Hongjun, LIU Wenli, GAO Yue. Experimental study on the vortex-induced vibration of fixed-hinged flexible risers[J]. Applied Mathematics and Mechanics, 2023, 44(2): 141-151. (in Chinese) doi: 10.21656/1000-0887.430320
|
| [4] |
FARSI M, SHARIATZADEH M J, BIJARCHI M A, et al. Low-speed wind energy harvesting from a vibrating cylinder and an obstacle cylinder by flow-induced vibration effect[J]. International Journal of Environmental Science and Technology, 2022, 19(3): 1261-1272. doi: 10.1007/s13762-021-03241-1
|
| [5] |
CHEN Z L, ALAM M M, QIN B, et al. Energy harvesting from and vibration response of different diameter cylinders[J]. Applied Energy, 2020, 278: 115737. doi: 10.1016/j.apenergy.2020.115737
|
| [6] |
SUN H, MA C H, KIM E S, et al. Flow-induced vibration of tandem circular cylinders with selective roughness: effect of spacing, damping and stiffness[J]. European Journal of Mechanics-B/Fluids, 2019, 74: 219-241. doi: 10.1016/j.euromechflu.2018.10.024
|
| [7] |
罗竹梅, 张立翔. 基于流固双向耦合的圆柱体涡激振动模拟[J]. 昆明理工大学学报(自然科学版), 2013, 38(3): 107-112.
LUO Zhumei, ZHANG Lixiang. Numerical simulation of vortex-induced vibration of cylinder based on two-way fluid-structure coupling[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2013, 38(3): 107-112. (in Chinese)
|
| [8] |
ZHANG B S, MAO Z Y, SONG B W, et al. Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation[J]. Ocean Engineering, 2018, 165: 55-68. doi: 10.1016/j.oceaneng.2018.07.042
|
| [9] |
SUN H, BERNITSAS M M, TURKOL M. Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations[J]. Renewable Energy, 2020, 149: 828-860. doi: 10.1016/j.renene.2019.12.076
|
| [10] |
ASSI G R S, BEARMAN P W, MENEGHINI J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism[J]. Journal of Fluid Mechanics, 2010, 661: 365-401. doi: 10.1017/S0022112010003095
|
| [11] |
谭潇玲, 涂佳黄, 雷平, 等. 剪切来流下串列三圆柱横向振动响应机理研究[J]. 振动与冲击, 2021, 40(20): 89-99.
TAN Xiaoling, TU Jiahuang, LEI Ping, et al. The influence mechanism of crossflow vibration response of three tandem cylinders in shear flow[J]. Journal of Vibration and Shock, 2021, 40(20): 89-99. (in Chinese)
|
| [12] |
赵伟文, 万德成. 用DES分离涡方法数值模拟串列双圆柱绕流问题[J]. 应用数学和力学, 2016, 37(12): 1272-1281. doi: 10.21656/1000-0887.370546
ZHAO Weiwen, WAN Decheng. Detached-eddy simulation of flow past tandem cylinders[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1272-1281. (in Chinese) doi: 10.21656/1000-0887.370546
|
| [13] |
XU W H, JI C N, SUN H, et al. Flow-induced vibration of two elastically mounted tandem cylinders in cross-flow at subcritical Reynolds numbers[J]. Ocean Engineering, 2019, 173: 375-387. doi: 10.1016/j.oceaneng.2019.01.016
|
| [14] |
ARMIN M, KHORASANCHI M, DAY S. Wake interference of two identical oscillating cylinders in tandem: an experimental study[J]. Ocean Engineering, 2018, 166: 311-323. doi: 10.1016/j.oceaneng.2018.08.012
|
| [15] |
李怀军, 孙海. 高雷诺数下串列粗糙三圆柱的流致振动试验研究[J]. 振动与冲击, 2024, 43(6): 280-287.
LI Huaijun, SUN Hai. Experimental investigation on the flow-induced vibration of three tandem roughness cylinders in high Reynolds number flow[J]. Journal of Vibration and Shock, 2024, 43(6): 280-287. (in Chinese)
|
| [16] |
CHANG C C, BERNITSAS M M. Hydrokinetic energy harnessing using the VIVACE converter with passive turbulence control[C]//Volume 5: Ocean Space Utilization; Ocean Renewable Energy. Rotterdam, The Netherlands. ASMEDC, 2011: 899-908.
|
| [17] |
DING W J, SUN H, XU W H, et al. Experimental and computational investigation of interactive flow induced oscillations of two tandem rough cylinders at 3×104 ≤ Re ≤ 1.2×105[J]. Ocean Engineering, 2021, 223: 108641. doi: 10.1016/j.oceaneng.2021.108641
|
| [18] |
DING L, ZHANG L, WU C M, et al. Numerical study on the effect of tandem spacing on flow-induced motions of two cylinders with passive turbulence control[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(2): 021801. doi: 10.1115/1.4034760
|
| [19] |
SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]// 30th Aerospace Sciences Meeting and Exhibit. NY, USA. AIAA, 1992.
|
| [20] |
ZHANG D H, SUN H, WANG W H, et al. Rigid cylinder with asymmetric roughness in flow induced vibrations[J]. Ocean Engineering, 2018, 150: 363-376. doi: 10.1016/j.oceaneng.2018.01.005
|
| [21] |
唐善然, 陈文礼, 李惠. 斜拉索风雨激振的数值模拟研究[J]. 工程力学, 2012, 29(3): 124-132.
TANG Shanran, CHEN Wenli, LI Hui. Investigation on rain-wind-induced vibration of stay cables based on numerical simulations[J]. Engineering Mechanics, 2012, 29(3): 124-132. (in Chinese)
|