| Citation: | LI Changtong, TIAN Jia, FENG Xiaozhou, LIU Yuntao. Dynamic Behavior and Sensitivity Analysis on a Class of Diabetes Models[J]. Applied Mathematics and Mechanics, 2026, 47(2): 243-256. doi: 10.21656/1000-0887.460021 |
| [1] |
ATKINSON M A, EISENBARTH G S, MICHELS A W. Type 1 diabetes[J]. The Lancet, 2014, 383(9911): 69-82. doi: 10.1016/S0140-6736(13)60591-7
|
| [2] |
TAYLOR R. Type 2 diabetes: etiology and reversibility[J]. Diabetes Care, 2013, 36(4): 1047-1055. doi: 10.2337/dc12-1805
|
| [3] |
BERGET C, MESSER L H, FORLENZA G P. A clinical overview of insulin pump therapy for the management of diabetes: past, present, and future of intensive therapy[J]. Diabetes Spectrum, 2019, 32(3): 194-204. doi: 10.2337/ds18-0091
|
| [4] |
WANG Xia, ZHANG Ying, SONG Xinyu. Mathematical model for diabetes mellitus with impulsive injections of glucose-insulin[J]. Chinese Quarterly Journal of Mathematics, 2017, 32(2): 118-133
|
| [5] |
HUANG M, LI J, SONG X, et al. Modeling impulsive injections of insulin: towards artificial pancreas[J]. SIAM Journal on Applied Mathematics, 2012, 72(5): 1524-1548. doi: 10.1137/110860306
|
| [6] |
MA M, LI J. Dynamics of a glucose-insulin model[J]. Journal of Biological Dynamics, 2022, 16(1): 733-745. doi: 10.1080/17513758.2022.2146769
|
| [7] |
SAVATOROVA V, TALONOV A. Differential equations for modeling pathways leading to diabetes onset[J]. CODEE Journal, 2024, 18(1): 1-31.
|
| [8] |
AL ALI H, BOUTAYEB W, BOUTAYEB A, et al. A mathematical model on the effect of growth hormone on glucose homeostasis[J]. ARIMA Joural, 2019, 30: 31-42.
|
| [9] |
KIM S H, PARK M J. Effects of growth hormone on glucose metabolism and insulin resistance in human[J]. Annals of Pediatric Endocrinology & Metabolism, 2017, 22(3): 145-152.
|
| [10] |
AL ALI H, DANESHKHAH A, BOUTAYEB A, et al. Exploring dynamical properties of a type 1 diabetes model using sensitivity approaches[J]. Mathematics and Computers in Simulation, 2022, 201: 324-342. doi: 10.1016/j.matcom.2022.05.008
|
| [11] |
傅金波, 陈兰荪. 基于两斑块和人口流动的SIR传染病模型的稳定性[J]. 应用数学和力学, 2017, 38(4): 486-494. doi: 10.21656/1000-0887.370087
FU Jinbo, CHEN Lansun. Stability of an SIR epidemic model with 2 patches and population movement[J]. Applied Mathematics and Mechanics, 2017, 38(4): 486-494. (in Chinese) doi: 10.21656/1000-0887.370087
|
| [12] |
贾西北, 蔺小林, 李建全, 等. 基于成熟阶段密度制约的同类相食模型的动力学分析[J]. 应用数学和力学, 2023, 44(3): 355-366. doi: 10.21656/1000-0887.430120
JIA Xibei, LIN Xiaolin, LI Jianquan, et al. Dynamics analysis of cannibalistic model with density dependence in mature stage[J]. Applied Mathematics and Mechanics, 2023, 44(3): 355-366. (in Chinese) doi: 10.21656/1000-0887.430120
|
| [13] |
AAKASH M, GUNASUNDARI C, SABARINATHAN S, et al. Mathematical insights into the SEIQRD model with Allee and fear dynamics in the context of COVID-19[J]. Partial Differential Equations in Applied Mathematics, 2024, 11: 100756. doi: 10.1016/j.padiff.2024.100756
|
| [14] |
CHITNIS N, HYMAN J M, CUSHING J M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model[J]. Bulletin of Mathematical Biology, 2008, 70(5): 1272-1296. doi: 10.1007/s11538-008-9299-0
|