Volume 47 Issue 2
Feb.  2026
Turn off MathJax
Article Contents
ZHU Jiahui, LI Chenyang, SHI Lei, ZHOU Hongtao, WANG Yanfeng. Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface[J]. Applied Mathematics and Mechanics, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058
Citation: ZHU Jiahui, LI Chenyang, SHI Lei, ZHOU Hongtao, WANG Yanfeng. Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface[J]. Applied Mathematics and Mechanics, 2026, 47(2): 123-135. doi: 10.21656/1000-0887.460058

Low-Frequency Ultra-Wideband Underwater Acoustic Diffusion Stealth Based on Locally Resonant Encoded Metasurface

doi: 10.21656/1000-0887.460058
  • Received Date: 2025-03-24
  • Rev Recd Date: 2025-04-18
  • Publish Date: 2026-02-01
  • Underwater acoustic stealth is of great significance for improving the survival and working capabilities of underwater devices. A method for underwater low-frequency ultra-wideband acoustic diffusion stealth based on the locally resonant coded metasurface was proposed. Firstly, an equivalent model of acoustic-vibration coupling for locally resonant metasurface elements was established, revealing the mechanical mechanism of an inverted T-shaped fractal structure in modulating the phases of underwater reflected acoustic waves. Then, a collaborative optimization design of the broadband coded elements was carried out based on the genetic algorithm. Furthermore, based on the coding theory, the coding sequence of the metasurface with superior diffusion performance within the broadband range was optimized. Finally, numerical simulations and experimental tests were conducted for this metasurface. The results show that, the metasurface coding element with an inverted T-shaped fractal structure can exhibit excellent ultra-wideband phase modulation performance at the deep sub-wavelength scale. The coded metasurface can achieve underwater diffusion stealth in the low broadband frequency range of 300~1 500 Hz. The experimental results are basically consistent with the simulation results. The research provides a new approach for underwater low-frequency ultra-wideband acoustic stealth.
  • (Contributed by WANG Yanfeng, M.AMM Youth Editorial Board)
  • loading
  • [1]
    刘倩倩, 徐宁. 基于声隐身技术的水下无人系统防护功能材料研究[J]. 电声技术, 2020, 44(1): 19-23.

    LIU Qianqian, XU Ning. Research on functional materials of unmanned underwater system based on protection performance[J]. Audio Engineering, 2020, 44(1): 19-23. (in Chinese)
    [2]
    焦达文. 分层海水环境中水下电场衰减规律和分布特性研究[J]. 舰船科学技术, 2021, 43(13): 137-142.

    JIAO Dawen. Research on attenuation law and distribution characteristics of underwater electric field in stratified seawater environment[J]. Ship Science and Technology, 2021, 43(13): 137-142. (in Chinese)
    [3]
    孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5): 479-510.

    SUN Weiwei, YANG Gang, CHEN Chao, et al. Development status and literature analysis of China's earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5): 479-510. (in Chinese)
    [4]
    白鸿柏, 詹智强, 任志英. 金属橡胶声学性能研究进展与展望[J]. 振动与冲击, 2020, 39(23): 242-254.

    BAI Hongbai, ZHAN Zhiqiang, REN Zhiying. Progress and prospect of acoustic properties of metal rubber[J]. Journal of Vibration and Shock, 2020, 39(23): 242-254. (in Chinese)
    [5]
    QIN D H, PAN G, LEE S, et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor[J]. Ocean Engineering, 2019, 188: 106228. doi: 10.1016/j.oceaneng.2019.106228
    [6]
    WANG W Q, XIE Y B, POPA B I, et al. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface[J]. Journal of Applied Physics, 2016, 120(19): 195103. doi: 10.1063/1.4967738
    [7]
    CHEN J, XIAO J, LISEVYCH D, et al. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens[J]. Nature Communications, 2018, 9: 4920. doi: 10.1038/s41467-018-07315-6
    [8]
    ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials, 2018, 3(12): 460-472. doi: 10.1038/s41578-018-0061-4
    [9]
    TIAN Z H, SHEN C, LI J F, et al. Programmable acoustic metasurfaces[J]. Advanced Functional Materials, 2019, 29(13): 1808489. doi: 10.1002/adfm.201808489
    [10]
    CAI L, WEN J H, YU D L, et al. Beam steering of the acoustic metasurface under a subwavelength periodic modulation[J]. Applied Physics Letters, 2017, 111(20): 201902. doi: 10.1063/1.5001954
    [11]
    ZHAO J J, LI B W, CHEN Z N, et al. Redirection of sound waves using acoustic metasurface[J]. Applied Physics Letters, 2013, 103(15): 151604. doi: 10.1063/1.4824758
    [12]
    HUR S, CHOI H, YOON G H, et al. Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water[J]. Scientific Reports, 2022, 12(1): 1485. doi: 10.1038/s41598-022-05547-7
    [13]
    BAI Y Z, SONG A L, SUN C Y, et al. Broadband sound focusing with tunable focus based on reconfigurable acoustic coding metagrating[J]. Applied Physics Letters, 2023, 122(26): 261705. doi: 10.1063/5.0152748
    [14]
    TIAN Y, WEI Q, CHENG Y, et al. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude[J]. Applied Physics Letters, 2017, 110(19): 191901. doi: 10.1063/1.4983282
    [15]
    LI W B, LU G X, HUANG X D. Acoustic hologram of the metasurface with phased arrays via optimality criteria[J]. Mechanical Systems and Signal Processing, 2022, 180: 109420. doi: 10.1016/j.ymssp.2022.109420
    [16]
    LI J F, WANG W Q, XIE Y B, et al. A sound absorbing metasurface with coupled resonators[J]. Applied Physics Letters, 2016, 109(9): 091908. doi: 10.1063/1.4961671
    [17]
    YUAN T Y, SONG X, XU J J, et al. Tunable acoustic composite metasurface based porous material for broadband sound absorption[J]. Composite Structures, 2022, 298: 116014. doi: 10.1016/j.compstruct.2022.116014
    [18]
    CHEN H Y, CHAN C T. Acoustic cloaking and transformation acoustics[J]. Journal of Physics D: Applied Physics, 2010, 43(11): 113001. doi: 10.1088/0022-3727/43/11/113001
    [19]
    SIECK C F, MARTIN T P, WISSMAN J P, et al. Aqueous acoustic metasurface for the anomalous reflection of sound[J]. The Journal of the Acoustical Society of America, 2019, 146(4): 300.
    [20]
    DUAN M Y, YU C L, XIN F X, et al. Tunable underwater acoustic metamaterialsvia quasi-Helmholtz resonance: from low-frequency to ultra-broadband[J]. Applied Physics Letters, 2021, 118(7): 071904. doi: 10.1063/5.0028135
    [21]
    BALLESTERO E, JIMÉNEZ N, GROBY J P, et al. Metadiffusers for quasi-perfect and broadband sound diffusion[J]. Applied Physics Letters, 2021, 119(4): 044101. doi: 10.1063/5.0053413
    [22]
    SCHROEDER M R. Diffuse sound reflection by maximum-length sequences[J]. The Journal of the Acoustical Society of America, 1975, 57(1): 149-150. doi: 10.1121/1.380425
    [23]
    SCHROEDER M R. Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion[J]. The Journal of the Acoustical Society of America, 1979, 65(4): 958-963. doi: 10.1121/1.382601
    [24]
    ZHU Y F, FAN X D, LIANG B, et al. Ultrathin acoustic metasurface-based schroeder diffuser[J]. Physical Review X, 2017, 7(2): 021034. doi: 10.1103/PhysRevX.7.021034
    [25]
    JIMÉNEZ N, COX T J, ROMERO-GARCÍA V, et al. Metadiffusers: deep-subwavelength sound diffusers[J]. Scientific Reports, 2017, 7(1): 5389. doi: 10.1038/s41598-017-05710-5
    [26]
    XIAO L, CAO W K, HE S, et al. Absorption-diffusion integrated acoustic metasurface for scattering reduction[J]. Applied Acoustics, 2024, 224: 110136. doi: 10.1016/j.apacoust.2024.110136
    [27]
    YU G K, QIU Y P, LI Y, et al. Underwater acoustic stealth by a broadband 2-bit coding metasurface[J]. Physical Review Applied, 2021, 15(6): 064064. doi: 10.1103/PhysRevApplied.15.064064
    [28]
    LI R C, JIANG Y T, ZHU R R, et al. Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks[J]. Scientific Reports, 2022, 12(1): 12037. doi: 10.1038/s41598-022-16312-1
    [29]
    LIANG T B, HE M, DONG H W, et al. Ultrathin waterborne acoustic metasurface for uniform diffuse reflections[J]. Mechanical Systems and Signal Processing, 2023, 192: 110226. doi: 10.1016/j.ymssp.2023.110226
    [30]
    CHEN D C, ZHU X F, WEI Q, et al. Broadband tunable focusing lenses by acoustic coding metasurfaces[J]. Journal of Physics D: Applied Physics, 2020, 53(25): 255501. doi: 10.1088/1361-6463/ab8247
    [31]
    ZHOU H T, FU W X, WANG Y F, et al. High-efficiency ultrathin nonlocal waterborne acoustic metasurface[J]. Physical Review Applied, 2021, 15(4): 044046. doi: 10.1103/PhysRevApplied.15.044046
    [32]
    ZHOU H T, FU W X, LI X S, et al. Loosely coupled reflective impedance metasurfaces: precise manipulation of waterborne sound by topology optimization[J]. Mechanical Systems and Signal Processing, 2022, 177: 109228. doi: 10.1016/j.ymssp.2022.109228
    [33]
    牛嘉敏, 吴九汇. 非对称类声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2018, 37(19): 45-49.

    NIU Jiamin, WU Jiuhui. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials[J]. Journal of Vibration and Shock, 2018, 37(19): 45-49. (in Chinese)
    [34]
    林臻, 吴九汇. 含间隙非线性弹性超材料的低频宽带机理[J]. 应用数学和力学, 2022, 43(5): 524-533. doi: 10.21656/1000-0887.430103

    LIN Zhen, WU Jiuhui. The low-frequency broadband mechanism of nonlinear elastic metamaterials with gaps[J]. Applied Mathematics and Mechanics, 2022, 43(5): 524-533. (in Chinese) doi: 10.21656/1000-0887.430103
    [35]
    LI J S, WEN X H, SHENG P. Acoustic metamaterials[J]. Journal of Applied Physics, 2021, 129(17): 171103. doi: 10.1063/5.0046878
    [36]
    FAHY F J, GARDONIO P. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Elsevier, 2007.
    [37]
    姚谦, 杨钊, 王昕, 等. 力学超结构设计方法研究进展[J]. 应用数学和力学, 2024, 45(8): 974-1000. doi: 10.21656/1000-0887.450307

    YAO Qian, YANG Zhao, WANG Xin, et al. The low-frequency a review of design methods for mechanical metastructures[J]. Applied Mathematics and Mechanics, 2025, 45(8): 974-1000. (in Chinese) doi: 10.21656/1000-0887.450307
    [38]
    CHEN Z, GUAN S, XIE Q, et al. Locally resonant metasurface for low-frequency transmissive underwater acoustic waves[J]. Frontiers in Physics, 2023, 10: 1098261. doi: 10.3389/fphy.2022.1098261
    [39]
    CHEN Z, YAN F, NEGAHBAN M, et al. Resonator-based reflective metasurface for low-frequency underwater acoustic waves[J]. 2020, 128(5): 055305.
    [40]
    胡博, 刘凯, 赵思缘, 等. 水下声学超表面异常折射方向调控研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 93-102.

    HU Bo, LIU Kai, ZHAO Siyuan, et al. Research on the regulation of abnormal refraction direction of underwater acoustic metasurface[J]. Journal of Harbin Engineering University, 2024, 45(1): 93-102. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (14) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return