Volume 47 Issue 1
Jan.  2026
Turn off MathJax
Article Contents
XIE Jianqiang, WANG Can. An Efficient Energy-Preserving Numerical Algorithm for Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2026, 47(1): 113-122. doi: 10.21656/1000-0887.460090
Citation: XIE Jianqiang, WANG Can. An Efficient Energy-Preserving Numerical Algorithm for Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2026, 47(1): 113-122. doi: 10.21656/1000-0887.460090

An Efficient Energy-Preserving Numerical Algorithm for Nonlinear Wave Equations

doi: 10.21656/1000-0887.460090
Funds:

The National Science Foundation of China(12201005)

  • Received Date: 2025-05-06
  • Rev Recd Date: 2025-06-17
  • Available Online: 2026-01-21
  • Publish Date: 2026-01-01
  • An energy-preserving numerical algorithm, which is 2nd-order in time and 4th-order in space, for nonlinear wave equations was developed based on the order reduction method, the Lagrange multiplier method and the compact difference method. The discrete original energy conservation property of the suggested algorithm was proven. The computational procedure of the associated algorithm was exhibited. Numerical results validate the exactness and effectiveness of the proposed algorithm.
  • loading
  • [2]DRAZIN P J, JOHNSON R S. Solitons: An Introduction[M]. Cambridge: Cambridge University Press, 1989.
    BRENNER P, VON WAHL W. Global classical solutions of nonlinear wave equations[J]. Mathematische Zeitschrift,1981,176(1): 87-121.
    [3]WAZWAZ A M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(5): 889-901.
    [4]王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024,45(4): 490-501. (WANG Chunyuan, LI Hong, HE Siriguleng. A continuous space-time mixed finite element method for sine-Gordon equations[J]. Applied Mathematics and Mechanics,2024,45(4): 490-501. (in Chinese))
    [5]张宇, 邓子辰, 胡伟鹏. Sine-Gordon方程的多辛Leap-frog格式[J]. 应用数学和力学, 2013,34(5): 437-444.(ZHANG Yu, DENG Zichen, HU Weipeng. Multi-symplectic leap-frog scheme for sine-Gordon equation[J]. Applied Mathematics and Mechanics,2013,34(5): 437-444. (in Chinese))
    [6]LI S, VU-QUOC L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM Journal on Numerical Analysis,1995,32(6): 1839-1875.
    [7]MCLACHLAN R I, QUISPEL G R. Discrete gradient methods have an energy conservation law[J]. Discrete and Continuous Dynamical Systems,2014,34(3): 1099-1104.
    [8]WANG B, WU X Y. The formulation and analysis of energy-preserving schemes for solving high dimensional nonlinear Klein-Gordon equations[J]. IMA Journal of Numerical Analysis,2019,39(4): 2016-2044.
    [9]BRUGNANO L, FRASCA CACCIA G, IAVERNARO F. Energy conservation issues in the numerical solution of the semilinear wave equation[J]. Applied Mathematics and Computation,2015,270: 842-870.
    [10]BRUGNANO L, ZHANG C J, LI D F. A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrdinger equation with wave operator[J]. Communications in Nonlinear Science and Numerical Simulation,2018,60: 33-49.
    [11]QUISPEL G R W, MCLAREN D I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical General,2008,41(4): 045206.
    [12]YANG X, ZHAO J, WANG Q. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics,2017,333: 104-127.
    [13]SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics,2018,353: 407-416.
    [14]CAI W, JIANG C, WANG Y, et al. Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions[J]. Journal of Computational Physics,2019,395: 166-185.
    [15]JIANG C, CAI W, WANG Y. A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach[J]. Journal of Scientific Computing,2019,80(3): 1629-1655.
    [16]DENG D W, WANG Q H. A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations[J]. Communications in Nonlinear Science and Numerical Simulation,2023,117: 106916.
    [17]DENG D W, CHEN J L, WANG Q H. Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations[J]. Numerical Algorithms,2023,93: 1045-1081.
    [18]ZHANG X H, MEI L Q, GUO S M. Energy-conserving SAV-Hermite-Galerkin spectral scheme with time adaptive method for coupled nonlinear Klein-Gordon system in multi-dimensional unbounded domains[J]. Journal of Computational and Applied Mathematics,2025,454: 116204.
    [19]CHENG Q, LIU C, SHEN J. A new Lagrange multiplier approach for gradient flows[J]. Computer Methods in Applied Mechanics and Engineering,2020,367: 113070.
    [20]WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia,2003,51(14): 4209-4223.
    [21]KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E: Statistical Physics,Plasmas,Fluids and Related Interdisciplinary Topics,1996,53(4): R3017-R3020.
    [22]BOETTINGER W J, WARREN J A, BECKERMANN C, KARMA A. Phase-field simulation of solidification[J]. Annual Review of Materials Research,2002,32: 163-194.
    [23]孙志忠. 偏微分方程数值解法[M]. 第2版. 北京: 科学出版社, 2012.(SUN Zhizhong. Numerical Solution of Partial Differential Equation[M]. 2nd ed. Beijing: Science Press, 2012. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return