Citation: | QIN Zhao-hong, CHEN Yu-shu. Singularity Analysis of Duffing-van der Pol System With Two Bifurcation Parameters Under Multi-Frequency Excitations[J]. Applied Mathematics and Mechanics, 2010, 31(8): 971-978. doi: 10.3879/j.issn.1000-0887.2010.08.009 |
[1] |
Nafyeh A H, Mook D L. Nonlinear Oscillations[M]. New York: Wiley Interscience, 1979: 325-328.
|
[2] |
Lim C W, Wu B S. A new analytical approach to the Duffing-harmonic oscillator [J]. Physics Letters A, 2003, 311(4/5): 365-373. doi: 10.1016/S0375-9601(03)00513-9
|
[3] |
Hu H, Tang J H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance [J]. Journal of Sound and Vibration, 2006, 294(3): 637-639. doi: 10.1016/j.jsv.2005.12.025
|
[4] |
Lim C W, Wu B S, Sun W P. Higher accuracy analytical approximations to the Duffing-harmonic oscillator [J]. Journal of Sound and Vibration, 2006, 296(4/5): 1039-1045. doi: 10.1016/j.jsv.2006.02.020
|
[5] |
Rand R H, Holmes P J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators [J]. International Journal of Non-Linear Mechanics, 1980, 15(4/5): 387-399. doi: 10.1016/0020-7462(80)90024-4
|
[6] |
Mettin R, Parlitz U, Lauterborn W. Bifurcation structure of the driven van der Pol oscillator [J]. International Journal of Bifurcation and Chaos, 1993, 3(6): 1592-1555.
|
[7] |
Wirkus S, Rand R. The dynamics of two coupled van der Pol oscillators with delay coupling [J]. Nonlinear Dynamics, 2004, 30(3): 205-221.
|
[8] |
Acunto M D. Determination of limit cycles for a modified van der Pol oscillator [J]. Mechanics Research Communications, 2006, 33(1): 93-98. doi: 10.1016/j.mechrescom.2005.06.012
|
[9] |
陈予恕. 非线性振动 [M]. 北京: 高等教育出版社, 2002: 201-208.
|
[10] |
Woafo P, Chedjou J C, Fotsin H B. Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator [J]. Physical Review E, 1996, 54: 5929-5934. doi: 10.1103/PhysRevE.54.5929
|
[11] |
Ji J C, Hansen C H. Stability and dynamics of a controlled van der Pol-Duffing oscillator [J]. Chaos, Solutions & Fractals, 2006, 28(2): 555-570.
|
[12] |
Jing Z J, Yang Z Y, Jiang T. Complex dynamics in Duffing-Van der Pol equation [J]. Chaos, Solutions & Fractals, 2006, 27(3): 722-747.
|
[13] |
Holmes P, Rand D. Phase portraits and bifurcation of nonlinear oscillator: x+(α+γx2)+βx+δx3=0[J]. International Journal of Nonlinear Mechanics, 1980, 15(6): 449-458. doi: 10.1016/0020-7462(80)90031-1
|
[14] |
Maccari Attilio. Approximate solution of a class of nonlinear oscillatiors in resonance with a periodic excitation [J]. Nonlinear Dynamics, 1998, 15(4): 329-343. doi: 10.1023/A:1008235820302
|
[15] |
董建宁, 申永军, 杨绍普. 多频激励作用下Duffing-van der Pol系统的分岔分析 [J]. 石家庄铁道学院学报, 2006, 19(1): 62-66.
|
[16] |
Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory[M]. VolⅠ,Ⅱ. New York: Spring-Verlag, 1985,1988.
|
[17] |
Qin Z H, Chen Y S. Singular analysis of bifurcation systems with two parameters [J]. Acta Mechanica Sinica, 2010, 26(3): 501-507. doi: 10.1007/s10409-010-0334-7
|
[18] |
Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998.
|