HUANG Jun-jie, Alatancang, WANG Hua. Eigenfunction Expansion Method and Its Application to Two-Dimensional Elasticity Problems Based on Stress Formulation[J]. Applied Mathematics and Mechanics, 2010, 31(8): 992-1000. doi: 10.3879/j.issn.1000-0887.2010.08.012
Citation: HUANG Jun-jie, Alatancang, WANG Hua. Eigenfunction Expansion Method and Its Application to Two-Dimensional Elasticity Problems Based on Stress Formulation[J]. Applied Mathematics and Mechanics, 2010, 31(8): 992-1000. doi: 10.3879/j.issn.1000-0887.2010.08.012

Eigenfunction Expansion Method and Its Application to Two-Dimensional Elasticity Problems Based on Stress Formulation

doi: 10.3879/j.issn.1000-0887.2010.08.012
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-07-01
  • Publish Date: 2010-08-15
  • Eigen function expansion method of solving two-dmiensional elasticity problems was proposed based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above two-dmien sional problems was rewritten as an upper triangular differential system. For the associated operatorm atrix, the existence and comple teness of two normed or thogonal eigen function systems in some space are obtained, which belong to the two block operators arising in the operator. Moreover, the general solution of the proceeding two-dimensional problem is given by the eigenfunction expansion.
  • loading
  • [1]
    Saint Venant A J C B de. Memoire sur la torsion des prismes[J]. Paris Memoires des Savants Etrangers, 1856,14: 233-560.
    [2]
    Timoshenko S,Goodier J N. Theory of Elasticity[M]. Third ed. New York: McGraw-Hill Book Co,1970.
    [3]
    钟万勰. 分离变量法与哈密尔顿体系[J]. 计算结构力学及其应用,1991,8(3):229-239.
    [4]
    钟万勰. 弹性力学求解新体系[M]. 大连:大连理工大学出版社,1995.
    [5]
    徐新生,王尕平,孙发明. 二维矩形域内Stokes流问题的辛解析和数值方法[J]. 应用数学和力学,2008,29(6):639-648.
    [6]
    Zhou Z H, Xu X S,Leung A Y T.The mode III stress electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts[J].International Journal of Solids and Structures,2009,46: 3577-3586.
    [7]
    姚伟岸,隋永枫. Reissner板弯曲的辛求解体系[J]. 应用数学和力学, 2004,25(2):159-165.
    [8]
    姚征,张洪武,王晋宝,钟万勰. 基于界带模型的碳纳米管声子谱的辛分析[J]. 固体力学学报, 2008,29(1): 13-22.
    [9]
    黄俊杰,阿拉坦仓,陈阿茹娜. 一类无穷维Hamilton算子特征函数系的完备性[J]. 应用数学学报,2008,31(3):457-466.
    [10]
    Wang H,Alatancang, Huang J J. Double symplectic eigenfunction expansion method of free vibration of rectangular thin plates[J].Commun Theor Phys, 2009,52(6): 1087-1092. doi: 10.1088/0253-6102/52/6/21
    [11]
    张鸿庆,阿拉坦仓,钟万勰. Hamilton体系与辛正交系的完备性[J]. 应用数学和力学,1997,18(3):217-221.
    [12]
    张鸿庆,阿拉坦仓. 辛正交系的完备性问题[J]. 大连理工大学学报, 1995, 35(6): 754-758.
    [13]
    Alatancang,Huang J J,Fan X Y. Structure of the spectrum for infinite dimensional Hamiltonian operators[J]. Science in China Series A-Mathematics, 2008, 51(5): 915-924. doi: 10.1007/s11425-007-0187-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1884) PDF downloads(687) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return