Citation: | HU Ming-yong, WANG An-wen, ZHANG Xiang-ming. Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003 |
[1] |
Nashif A, Jones D, Henderson J.Vibration Damping[M].New York:John Wiley & Sons, 1985.
|
[2] |
Mead D J.Passive Vibration Control[M].Chichester:John Wiley & Sons, 1998.
|
[3] |
Jones D I G.Handbook of Viscoelastic Vibration Damping[M].Chichester:John Wiley & Sons, 2001.
|
[4] |
Kerwin J E M.Damping of flexural waves by a constrained viscoelastic layer[J].Journal of the Acoustical Society of America, 1959, 31(7):952-962. doi: 10.1121/1.1907821
|
[5] |
Mead D J, Markus S.The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions[J].Journal of Sound and Vibration, 1969, 10(2):163-175. doi: 10.1016/0022-460X(69)90193-X
|
[6] |
Yan M J, Dowell E H.Governing equations of vibrating constrained-layer damping sandwich plates and beams[J].Journal of Applied Mechanics, 1972, 94: 1041-1047.
|
[7] |
Ravi S S A, Kundra T K, Nakra B C.Response reanalysis of damped beams using eigen-parameter perturbation[J].Journal of Sound and Vibration, 1995, 179: 399-412. doi: 10.1006/jsvi.1995.0026
|
[8] |
Baber T T, Maddox R A, Orozco C E.Finite element model for harmonically excited viscoelastic sandwich beams[J].Computers and Structures, 1998, 66(1):105-113. doi: 10.1016/S0045-7949(97)00046-1
|
[9] |
Zheng H, Cai C, Tan X M.Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J].Computers and Structures, 2004, 82(29/30):2493-2507. doi: 10.1016/j.compstruc.2004.07.002
|