Citation: | HOU Xiu-hui, DENG Zi-chen, ZHOU Jia-xi. Symplectic Analysis for Wave Propagation in One-Dimensional Nonlinear Periodic Structures[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1297-1307. doi: 10.3879/j.issn.1000-0887.2010.11.004 |
[1] |
Mead D M. Wave propagation in continuous periodic structures: research contributions from southampton, 1964-1995[J]. Journal of Sound and Vibration, 1996, 190(3): 495-524. doi: 10.1006/jsvi.1996.0076
|
[2] |
Yan Z Z,Wang Y S. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method[J]. Physical Review B(Condensed Matter and Materials Physics), 2008, 78(9): 4306-4316.
|
[3] |
Jensen J S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration, 2003, 266(5): 1053-1078. doi: 10.1016/S0022-460X(02)01629-2
|
[4] |
Zhang Y P, Wu B. Composition relation between gap solitons and Bloch waves in nonlinear periodic systems[J]. Physical Review Letters, 2009, 102(9): 3905-3908.
|
[5] |
刘志芳, 王铁锋, 张善元. 梁中非线性弯曲波传播特性的研究[J]. 力学学报, 2007, 39(2): 238-244.
|
[6] |
Yagi D, Kawahara T. Strongly nonlinear envelope soliton in a lattice model for periodic structure[J]. Wave Motion, 2001, 34(1): 97-107. doi: 10.1016/S0165-2125(01)00062-2
|
[7] |
Richoux O, Depollier C, Hardy J. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice[J]. Physical Review E, 2006, 73(2): 6611-6621.
|
[8] |
Marathe A, Chatterjee A. Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[J]. Journal of Sound and Vibration, 2006, 289(4/5): 871-888. doi: 10.1016/j.jsv.2005.02.047
|
[9] |
Georgiou I T, Vakakis A F. An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 1996, 31(6): 871-886. doi: 10.1016/S0020-7462(96)00104-7
|
[10] |
Romeo F, Rega G. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach[J]. Chaos, Solitons & Fractals, 2006, 29(3): 606-617.
|
[11] |
钟万勰. 应用力学的辛数学方法[M].北京:高等教育出版社, 2006.
|
[12] |
Zhong W X, Williams F W, Leung A Y T. Symplectic analysis for periodical electro-magnetic waveguides[J]. Journal of Sound and Vibration, 2003, 267(2): 227-244. doi: 10.1016/S0022-460X(02)01451-7
|
[13] |
冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社, 2002.
|
[14] |
Feng K. On difference schemes and symplectic geometry[C]Proceeding of the 1984 Beijing symposium on D D. Beijing: Science Press, 1984.
|
[15] |
张素英, 邓子辰. 非线性动力学系统的几何积分理论及应用[M].西安:西北工业大学出版社, 2005.
|
[16] |
Elmaimouni L, Lefebvre J E, Zhang V, Gryba T. A polynomial approach to the analysis of guided waves in anisotropic cylinders of infinite length[J]. Wave Motion, 2005, 42(2): 177-189. doi: 10.1016/j.wavemoti.2005.01.005
|
[17] |
Wu C J, Chen H L, Huang X Q. Sound radiation from a finite fluid-filled/submerged cylindrical shell with porous material sandwich[J]. Journal of Sound and Vibration, 2000, 238(3): 425-441. doi: 10.1006/jsvi.2000.3086
|
[18] |
Bridges T J. Multi-symplectic structures and wave propagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121(1): 147-190. doi: 10.1017/S0305004196001429
|
[19] |
Reich S. Multi-symplectic Runge-Kutta collocation method for Hamiltonian wave equations[J]. Journal of Computational Physics, 2000, 157(2): 473-499. doi: 10.1006/jcph.1999.6372
|
[20] |
Marsden J E, Pekarsky S, Shkoller S, West M. Variational methods, multisymplectic geometry and continuum mechanics[J]. Journal of Geometry and Physics, 2001, 38(3/4): 253-284. doi: 10.1016/S0393-0440(00)00066-8
|
[21] |
Williams F W, Zhong W X, Bennett P N. Computation of the eigenvalues of wave propagation in periodic substructural systems[J]. Journal of Vibration and Acoustics, 1993, 115(4): 422-426. doi: 10.1115/1.2930367
|
[22] |
Zhou M, Zhong W X, Williams F W. Wave propagation in substructural chain-type structures excited by harmonic forces[J]. International Journal of Mechanical Sciences, 1993, 35(11): 953-964. doi: 10.1016/0020-7403(93)90032-P
|
[23] |
张洪武, 姚征, 钟万勰. 界带分析的基本理论和计算方法[J]. 计算力学学报, 2006, 23(3): 257-263.
|
[24] |
Zhang H W, Yao Z, Wang J B, Zhong W X. Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method[J]. International Journal of Solids and Structures, 2007, 44(20): 6428-6449. doi: 10.1016/j.ijsolstr.2007.02.033
|
[25] |
姚征, 张洪武, 王晋宝. 基于界带模型的碳纳米管声子谱的辛分析[J]. 固体力学学报, 2008, 29(1): 13-22.
|
[26] |
Hennig D,Tsironis G P. Wave transmission in nonlinear lattices[J]. Physics Reports, 1999, 307(5/6): 333-432. doi: 10.1016/S0370-1573(98)00025-8
|