Citation: | SHANG Yue-qiang, LUO Zhen-dong. A Parallel Two-Level Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1351-1359. doi: 10.3879/j.issn.1000-0887.2010.11.008 |
[1] |
HE Yin-nian, XU Jin-chao, ZHOU Ai-hui. Local and parallel finite element algorithms for the Navier-Stokes problem[J]. J Comput Math, 2006, 24(3): 227-238.
|
[2] |
马飞遥, 马逸尘, 沃维丰. 基于二重网格的定常Navier-Stokes方程的局部和并行有限元算法[J]. 应用数学和力学, 2007, 28(1): 27-35.
|
[3] |
Adams R. Sobolev Spaces[M].New York: Academic Press Inc, 1975.
|
[4] |
Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations—Theory and Algorithms[M].Berlin: Springer-Verlag, 1986.
|
[5] |
HE Yin-nian, LI Jian. Convergence of three iterative methods based on finite element discretization for the stationary Navier-Stokes equations[J]. Comput Meth Appl Mech Engrg, 2009, 198: 1351-1359. doi: 10.1016/j.cma.2008.12.001
|
[6] |
XU Jin-chao, ZHOU Ai-hui. Local and parallel finite element algorithms based on two-grid discretizations[J]. Math Comput, 2000, 69(231): 881-909.
|
[7] |
SHANG Yue-qiang, HE Yin-nian. Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations[J].Appl Numer Math, 2010, 60(7): 719-737. doi: 10.1016/j.apnum.2010.03.013
|
[8] |
HE Yin-nian. A fully discrete stabilized finite element method for the time-dependent Navier-Stokes problem[J].IMA J Numer Anal, 2003, 23(4): 665-691. doi: 10.1093/imanum/23.4.665
|
[9] |
HE Yin-nian. A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations II: time discretization[J].J Comput Math, 2004, 22(1): 33-54.
|
[10] |
Heywood J G, Rannacher R.Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization[J]. SIAM J Numer Anal, 1982, 19(2): 275-311. doi: 10.1137/0719018
|