SHANG Yue-qiang, LUO Zhen-dong. A Parallel Two-Level Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1351-1359. doi: 10.3879/j.issn.1000-0887.2010.11.008
Citation: SHANG Yue-qiang, LUO Zhen-dong. A Parallel Two-Level Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1351-1359. doi: 10.3879/j.issn.1000-0887.2010.11.008

A Parallel Two-Level Finite Element Method for the Navier-Stokes Equations

doi: 10.3879/j.issn.1000-0887.2010.11.008
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-10-11
  • Publish Date: 2010-11-15
  • Based on domain decomposition,a parallel two-level finite element method for the stationary Navier-Stokes equations was proposed and analyzed. The basic idea of the method was to first solve the Navier-Stokes equations on a coarse grid,then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations,error bounds of the approximate solution were derived. Numerical results were also given to illustrate the high efficiency of the method.
  • loading
  • [1]
    HE Yin-nian, XU Jin-chao, ZHOU Ai-hui. Local and parallel finite element algorithms for the Navier-Stokes problem[J]. J Comput Math, 2006, 24(3): 227-238.
    [2]
    马飞遥, 马逸尘, 沃维丰. 基于二重网格的定常Navier-Stokes方程的局部和并行有限元算法[J]. 应用数学和力学, 2007, 28(1): 27-35.
    [3]
    Adams R. Sobolev Spaces[M].New York: Academic Press Inc, 1975.
    [4]
    Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations—Theory and Algorithms[M].Berlin: Springer-Verlag, 1986.
    [5]
    HE Yin-nian, LI Jian. Convergence of three iterative methods based on finite element discretization for the stationary Navier-Stokes equations[J]. Comput Meth Appl Mech Engrg, 2009, 198: 1351-1359. doi: 10.1016/j.cma.2008.12.001
    [6]
    XU Jin-chao, ZHOU Ai-hui. Local and parallel finite element algorithms based on two-grid discretizations[J]. Math Comput, 2000, 69(231): 881-909.
    [7]
    SHANG Yue-qiang, HE Yin-nian. Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations[J].Appl Numer Math, 2010, 60(7): 719-737. doi: 10.1016/j.apnum.2010.03.013
    [8]
    HE Yin-nian. A fully discrete stabilized finite element method for the time-dependent Navier-Stokes problem[J].IMA J Numer Anal, 2003, 23(4): 665-691. doi: 10.1093/imanum/23.4.665
    [9]
    HE Yin-nian. A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations II: time discretization[J].J Comput Math, 2004, 22(1): 33-54.
    [10]
    Heywood J G, Rannacher R.Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization[J]. SIAM J Numer Anal, 1982, 19(2): 275-311. doi: 10.1137/0719018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2411) PDF downloads(989) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return