Citation: | FU Ming-hui, ZHANG Wen-zhi, Sergey V Sheshenin. Precise Integration Method for Solving Singular Perturbation Problems[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011 |
[1] |
苏煜城. 奇异摄动中的边界层校正法[M]. 上海: 上海科学技术出版社, 1983.
|
[2] |
Kadalbajoo M K, Reddy Y N. Asymptotic and numerical analysis of singular perturbation problems: a survey[J]. Applied Mathematics and Computation, 1989, 30(3): 223-259. doi: 10.1016/0096-3003(89)90054-4
|
[3] |
Chawla M M. A fourth-order tridiagonal finite difference method for general non-linear two-point boundary value problems with mixed boundary conditions[J]. IMA J Appl Math, 1978, 21(1): 83-93. doi: 10.1093/imamat/21.1.83
|
[4] |
苏煜城, 吴启光. 奇异摄动问题数值方法引论[M]. 重庆: 重庆出版社, 1991.
|
[5] |
Andargie A, Reddy Y N. Fitted fourth-order tridiagonal finite difference method for singular perturbation problems[J]. Applied Mathematics and Computation, 2007, 192(1): 90-100. doi: 10.1016/j.amc.2007.02.123
|
[6] |
Stynes M, O’Riordan E. A uniformly accurate finite-element method for a singular-perturbation problem in conservative form[J]. SIAM Journal on Numerical Analysis, 1986, 23(2): 369-375. doi: 10.1137/0723024
|
[7] |
Vigo-Aguiar J, Natesan S. A parallel boundary value technique for singularly perturbed two-point boundary value problems[J]. The Journal of Supercomputing, 2004, 27(2): 195-206. doi: 10.1023/B:SUPE.0000009322.23950.53
|
[8] |
Reddy Y N, Chakravarthy P P. An initial-value approach solving for singularly perturbed two-point boundary value problems[J]. Applied Mathematics and Computation, 2004, 155(1): 95-110. doi: 10.1016/S0096-3003(03)00763-X
|
[9] |
Kadalbajoo M K, Kumar D. Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme[J]. Computers and Mathematics With Applications, 2009, 57(7): 1147-1156. doi: 10.1016/j.camwa.2009.01.010
|
[10] |
Aziz T, Khan A. A spline method for second-order singularly perturbed boundary-value problems[J]. Journal of Computational and Applied Mathematics, 2002, 147(2): 445-452. doi: 10.1016/S0377-0427(02)00479-X
|
[11] |
Tirmizi I A, Fazal-i-Haq, Siraj-ul-Islam. Non-polynomial spline solution of singularly perturbed boundary-value problems[J]. Applied Mathematics and Computation, 2008, 196(1): 6-16. doi: 10.1016/j.amc.2007.05.029
|
[12] |
Zhong W X, Williams F W. A precise time step integration method[J]. Proceedings of the Institute of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, 1994, 208(C6): 427-430. doi: 10.1243/PIME_PROC_1994_208_148_02
|
[13] |
Lin J H, Sun D K, Zhong W X, Zhang W S. High efficiency computation of the variances of structural evolutionary random responses[J]. Shock and Vibration, 2000, 7(4): 209-216.
|
[14] |
Gu Y X, Chen B S, Zhang H W, Grandhi R V. A sensitivity analysis method for linear and nonlinear transient heat conduction with precise time integration[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 23-37. doi: 10.1007/s00158-002-0211-5
|
[15] |
Zhang H W, Zhang X W, Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J]. Computers and Structures, 2003, 81(17): 1739-1749. doi: 10.1016/S0045-7949(03)00167-6
|
[16] |
Zhong W X. Combined method for the solution of asymmetric Riccati differential equations[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1/2): 93-102. doi: 10.1016/S0045-7825(01)00246-8
|
[17] |
Chen B S, Tong L Y, Gu Y X. Precise time integration for linear two-point boundary value problems[J]. Applied Mathematics and Computation, 2006, 175(1): 182-211. doi: 10.1016/j.amc.2005.08.001
|
[18] |
富明慧, 林敬华. 一类指数矩阵函数及其应用[J]. 力学学报, 2009, 41(5): 808-814.
|
[19] |
谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分法[J]. 力学学报, 2007, 39(3): 374-381.
|
[20] |
Wang M F, Zhou X Y. Renewal precise time step integration method of structural dynamic analysis[J]. Acta Mechanica Sinica, 2004, 36(2): 191-195.
|
[21] |
任传波, 贺光宗, 李忠芳. 结构动力学精细积分的一种高精度通用计算格式[J]. 机械科学与技术, 2005, 24(12): 1507-1509.
|
[22] |
富明慧,梁华力. 一种改进的精细-龙格库塔法[J]. 中山大学学报(自然科学版), 2009, 48(5): 1-5.
|