FU Ming-hui, ZHANG Wen-zhi, Sergey V Sheshenin. Precise Integration Method for Solving Singular Perturbation Problems[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011
Citation: FU Ming-hui, ZHANG Wen-zhi, Sergey V Sheshenin. Precise Integration Method for Solving Singular Perturbation Problems[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011

Precise Integration Method for Solving Singular Perturbation Problems

doi: 10.3879/j.issn.1000-0887.2010.11.011
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-09-15
  • Publish Date: 2010-11-15
  • A precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end was presented. Firstly,the interval was divided evenly,then a set of algebraic equations in the form of matrix by the precise integration relationship of each segment was given. Substituting the boundary conditions into the algebraic equations,the coefficient matrix could be transformed to the form of block tridiagonal matrix. Combining the special nature of the problem,an efficient reduction method for singular perturbation problems was given. Since the precise integration relationship gives no discrete error in the discrete process,the present method has very high precision. Numerical examples show the validity of the present method.
  • loading
  • [1]
    苏煜城. 奇异摄动中的边界层校正法[M]. 上海: 上海科学技术出版社, 1983.
    [2]
    Kadalbajoo M K, Reddy Y N. Asymptotic and numerical analysis of singular perturbation problems: a survey[J]. Applied Mathematics and Computation, 1989, 30(3): 223-259. doi: 10.1016/0096-3003(89)90054-4
    [3]
    Chawla M M. A fourth-order tridiagonal finite difference method for general non-linear two-point boundary value problems with mixed boundary conditions[J]. IMA J Appl Math, 1978, 21(1): 83-93. doi: 10.1093/imamat/21.1.83
    [4]
    苏煜城, 吴启光. 奇异摄动问题数值方法引论[M]. 重庆: 重庆出版社, 1991.
    [5]
    Andargie A, Reddy Y N. Fitted fourth-order tridiagonal finite difference method for singular perturbation problems[J]. Applied Mathematics and Computation, 2007, 192(1): 90-100. doi: 10.1016/j.amc.2007.02.123
    [6]
    Stynes M, O’Riordan E. A uniformly accurate finite-element method for a singular-perturbation problem in conservative form[J]. SIAM Journal on Numerical Analysis, 1986, 23(2): 369-375. doi: 10.1137/0723024
    [7]
    Vigo-Aguiar J, Natesan S. A parallel boundary value technique for singularly perturbed two-point boundary value problems[J]. The Journal of Supercomputing, 2004, 27(2): 195-206. doi: 10.1023/B:SUPE.0000009322.23950.53
    [8]
    Reddy Y N, Chakravarthy P P. An initial-value approach solving for singularly perturbed two-point boundary value problems[J]. Applied Mathematics and Computation, 2004, 155(1): 95-110. doi: 10.1016/S0096-3003(03)00763-X
    [9]
    Kadalbajoo M K, Kumar D. Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme[J]. Computers and Mathematics With Applications, 2009, 57(7): 1147-1156. doi: 10.1016/j.camwa.2009.01.010
    [10]
    Aziz T, Khan A. A spline method for second-order singularly perturbed boundary-value problems[J]. Journal of Computational and Applied Mathematics, 2002, 147(2): 445-452. doi: 10.1016/S0377-0427(02)00479-X
    [11]
    Tirmizi I A, Fazal-i-Haq, Siraj-ul-Islam. Non-polynomial spline solution of singularly perturbed boundary-value problems[J]. Applied Mathematics and Computation, 2008, 196(1): 6-16. doi: 10.1016/j.amc.2007.05.029
    [12]
    Zhong W X, Williams F W. A precise time step integration method[J]. Proceedings of the Institute of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, 1994, 208(C6): 427-430. doi: 10.1243/PIME_PROC_1994_208_148_02
    [13]
    Lin J H, Sun D K, Zhong W X, Zhang W S. High efficiency computation of the variances of structural evolutionary random responses[J]. Shock and Vibration, 2000, 7(4): 209-216.
    [14]
    Gu Y X, Chen B S, Zhang H W, Grandhi R V. A sensitivity analysis method for linear and nonlinear transient heat conduction with precise time integration[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 23-37. doi: 10.1007/s00158-002-0211-5
    [15]
    Zhang H W, Zhang X W, Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J]. Computers and Structures, 2003, 81(17): 1739-1749. doi: 10.1016/S0045-7949(03)00167-6
    [16]
    Zhong W X. Combined method for the solution of asymmetric Riccati differential equations[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1/2): 93-102. doi: 10.1016/S0045-7825(01)00246-8
    [17]
    Chen B S, Tong L Y, Gu Y X. Precise time integration for linear two-point boundary value problems[J]. Applied Mathematics and Computation, 2006, 175(1): 182-211. doi: 10.1016/j.amc.2005.08.001
    [18]
    富明慧, 林敬华. 一类指数矩阵函数及其应用[J]. 力学学报, 2009, 41(5): 808-814.
    [19]
    谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分法[J]. 力学学报, 2007, 39(3): 374-381.
    [20]
    Wang M F, Zhou X Y. Renewal precise time step integration method of structural dynamic analysis[J]. Acta Mechanica Sinica, 2004, 36(2): 191-195.
    [21]
    任传波, 贺光宗, 李忠芳. 结构动力学精细积分的一种高精度通用计算格式[J]. 机械科学与技术, 2005, 24(12): 1507-1509.
    [22]
    富明慧,梁华力. 一种改进的精细-龙格库塔法[J]. 中山大学学报(自然科学版), 2009, 48(5): 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1909) PDF downloads(839) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return