DING Bo-yang, JIANG Jia-qi. Time-Domain BEM Calculation for Porodynamics[J]. Applied Mathematics and Mechanics, 2015, 36(1): 31-47. doi: 10.3879/j.issn.1000-0887.2015.01.003
Citation: DING Bo-yang, JIANG Jia-qi. Time-Domain BEM Calculation for Porodynamics[J]. Applied Mathematics and Mechanics, 2015, 36(1): 31-47. doi: 10.3879/j.issn.1000-0887.2015.01.003

Time-Domain BEM Calculation for Porodynamics

doi: 10.3879/j.issn.1000-0887.2015.01.003
Funds:  The National Natural Science Foundation of China(11172268;51478435)
  • Received Date: 2014-04-03
  • Rev Recd Date: 2014-12-01
  • Publish Date: 2015-01-15
  • The boundary element method (BEM) in time domain was employed for the dynamic analysis of saturated porous media subjected to external forces. Based on Biot’s porodynamic equations, the U-P formulation of Green’s function obtained through decoupling of the fast and slow dilational waves, the transformation of Stokes’state as well as Somigliana’s representation, the discretization forms of the boundary integration equations in time domain were discussed in detail. Specially, with the aid of achievement for a single-phase medium, the singularity in the integration of the BEM for a porous medium was successfully treated in numerical implementation. Finally, in several examples, the response results of the displacements and pore pressures from numerical calculation with dimensionless material parameters were presented. Since the time-domain BEM calculation is hardly found in porodynamics as yet, the proposed method makes a new way for the research of dynamic response of 2phase saturated porous media.
  • [1]
    Biot M A. General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12(2): 155-164.
    [2]
    Frenkel J. On the theory of seismic and seismoelectric phenomena in a moist soil[J]. Journal of Physics,1944,13(4): 230-241.
    [3]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—1: low frequency range[J].J Acoust Soc Am,1956,28(2): 168-178.
    [4]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—2: higher frequency range[J].J Acoust Soc Am,1956,28(2): 179-191.
    [5]
    Biot M A, Willis D G. The elastic coefficients of the theory of consolidation[J].J Appl Mech,1957,24: 594-601.
    [6]
    Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am,1962,34(5): 1254-1264.
    [7]
    Bowen R M. Incompressible porous media models by use of the theory of mixtures[J].Int J Engng Sci,1980,18(9): 1129-1148.
    [8]
    Bowen R M. Compressional porous media models by use of the theory of mixtures[J].Int J Engng Sci,1982,20(6): 697-735.
    [9]
    Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J].Appl Phys Lett,1980,36(4): 259-261.
    [10]
    丁伯阳. 含裂隙介质受压破裂前地震波特性的综合实验研究与理论分析[J]. 西北地震学报, 1983, 5(5): 21-33.(DING Bo-yang. Experimental study and theoretical analysis of seismic wave charactristics before the cracks and pore medium[J].Northwestern Seismological Journal,1983,5(5): 21-33.(in Chinese))
    [11]
    Plona T J, Johnson D L. Acoustic properties of porous systems—I: phenomenological description[C]//Physics and Chemistry of Porous Media . New York: Johnson D L, Sen P N, 1984: 89-104.
    [12]
    Burridge R, Vargas C A. The fundamental solution in dynamic poroelasticity[J].Geophys J Roy Astron Soc,1979,58(1): 61-90.
    [13]
    Manolis G D, Beskos D E. Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity[J].Acta Mechanica,1989,76(1/2): 89-104.
    [14]
    Manolis G D, Beskos D E. Errata inintegral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity[J].Acta Mechanica,1990,83(3/4): 223-226.
    [15]
    Norris A N. Radiation from a point source and scattering theory in a fluid saturated porous solid[J].J Acoust Soc Am,1985,77(6): 2012-2023.
    [16]
    Nowacki W.Dynamics Problems of Thermoelasticity[M]. Noordhoff, 1975.
    [17]
    Senjuntichai T, Rajapakse R K N D. Dynamic Green’s functions of homogeneous poroelastic half-plane[J].Journal Engineering Mechanics, ASCE,1994,120(11): 2381-2464.
    [18]
    Halpern M R, Christiano P. Response of poroelastic half space to steady-state harmonic surface tractions[J].Int J Numer Anal Meth Geomech,1986,10(6): 609-632.
    [19]
    Kaynia A M, Banerjee P K. Fundamental solutions of Biot’s equation of dynamic poroelasticity[J].Int J Engng Sci,1993,31(5): 817-830.
    [20]
    Auriault J L, Borne L, Chambon R. Dynamics of porous saturated media, checking of the generalized law of Darcy[J].J Acoust Soc Am,1985,77(5): 1641-1650.
    [21]
    Auriault J L. Dynamic behaviour of a porous medium saturated by a Newtonian fluid[J].Int J Engng Sci,1980,18(6): 775-785.
    [22]
    Cleary M P. Fundamental solutions for a fluid-saturated porous solid[J].Int J Solid Struct,1977,13(9): 785-806.
    [23]
    Philippacopoulos A J. Waves in a partially saturated layered half-space analytic formulation[J].Bull Seism Soc Am,1987,77(5): 1838-1853.
    [24]
    Philippacopoulos A J. Lamb’s problem for fluid-saturated porous media[J].Bull Seism Soc Am ,1988,78(2): 908-923.
    [25]
    Bonnet G. Basic singular solutions for a poroelastic medium in the dynamic range[J].J Acoust Soc Am,1987,82(5): 1758-1762.
    [26]
    Cheng A H D, Badmus T, Beskos D E. Integral equation for dynamic poroelasticity in frequency domain with BEM solution[J].Journal Engineering Mechanics,1991,117(5): 1136-1157.
    [27]
    Cheng A H D, Detournay E. On Singular integral equations and fundamental solutions of poroelasticity[J].Int J Solids Struct,1998,35(34/35): 4521-4555.
    [28]
    Erigen A C, Suhubi E S.Elastodynamics—II: Linear Theory [M]. New York: Academic, 1975.
    [29]
    Cheng A H D, Detournay E. A direct boundary element method for plane strain poroelasticity[J].Int J Numer Anal Meth Geomech,1988,12(5): 551-572.
    [30]
    Manolis G D. A comparative study on three boundary element method approaches to problems in elastodynamics[J].Int J Numer Meth Engng,1983,19(1): 73-91.
    [31]
    Banerjee P K, Ahmad S, Manolis G D.Transient elastodynamic analysis of three-dimensional problems by boundary element method[J].Earthquake Engng Struct Dyn,1986,14(6): 933-949.
    [32]
    Dominguez J.Boundary Elements in Dynamics [M]. Southampton/London: Computational Mechanics Publications/Elsevier, 1993.
    [33]
    Dominguez J, Marrero M. Numerical behavior of time domain BEM for three-dimensional transient elastodynamic problems[J].Engng Analysis With Boundary Elements,2003,27(1): 39-48.
    [34]
    姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.(YAO Zhen-han, WANG Hai-tao.Boundary Element Methods [M]. Beijing: Higher Education Press, 2010.(in Chinese))
    [35]
    Ariza M P, Saez A, Dominguez J. A singular element for three dimensional fracture mechanics analysis[J].Engng Anal Bound Elem,1997,20(4): 275-285.
    [36]
    Chen J. Time domain fundamental solutions to Biot’s complete equations of dynamic poroelasticity—part I:two-dimensional solution[J].Int J Solid Struct,1994,31(10): 1447-1490.
    [37]
    Chen J. Time domain fundamental solutions to Biot’s complete equations of dynamic poroelasticity—part II: three-dimensional solution[J].Int J Solid Struct,1994,31(2): 169-202.
    [38]
    DING Bo-yang, Alexander H D Cheng, CHEN Zhang-long. Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition[J].J Appl Mech,2013,80(5): 061021(1)-061021(12).
    [39]
    Ding B Y, Yuan J H. Dynamic Green’s functions of a two-phase saturated medium subjected to a concentrated force[J].Int J Solids Struct,2011,48(16/17): 2288-2303.
    [40]
    丁伯阳, 党改红, 袁金华. 伴有排水的两相饱和介质动力问题的LAMB积分公式[J]. 应用数学和力学, 2010,31(9): 1066-1074.(DING Bo-yang, DANG Gai-hong, YUAN jin-hua. Lamb’s integral formulas of two-phase saturated medium for soil dynamic with drainage[J].Appl Math Mech,2010,31(9): 1066-1074.(in Chinese))
  • Relative Articles

    [1]ZHAO Xiang, MENG Shiyao. Forced Vibration Analysis of Euler-Bernoulli Double-Beam Systems by Means of Green’s Functions[J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. doi: 10.21656/1000-0887.430298
    [2]JI Anzhao, WANG Yufeng, ZHANG Guangsheng. A Green’s Function Construction Method of the Single Well Seepage Model for Asymmetric Fractures[J]. Applied Mathematics and Mechanics, 2022, 43(4): 424-434. doi: 10.21656/1000-0887.420237
    [3]LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106
    [4]LIU Xue-mei, DENG Zi-chen, HU Wei-peng. A Multi-Symplectic Method for Dynamic Responses of Incompressible Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2015, 36(3): 242-251. doi: 10.3879/j.issn.1000-0887.2015.03.002
    [5]DONG Man-sheng, LI Man, LIN Zhi, TANG Fei, JIANG Shu-ping. Dynamic Response of the Submerged Floating Tunnel Under Random Seismic Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1320-1329. doi: 10.3879/j.issn.1000-0887.2014.12.004
    [6]A.H.Mosaffa, F.Talati, M.A.Rosen, H.Basirat Tabrizi. Green’s Function Solution for Transient Heat Conduction in an Annular Fin During Solidification of a PCM[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1180-1188. doi: 10.3879/j.issn.1000-0887.2012.10.004
    [7]CUI Yuan-qing, YANG Wei, ZHONG Zheng. Green’s Function for T-Stress of a Semi-Infinite Plane Crack[J]. Applied Mathematics and Mechanics, 2011, 32(8): 912-919. doi: 10.3879/j.issn.1000-0887.2011.08.002
    [8]LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001
    [9]LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Simply-Supported Trapezoidal Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(5): 602-608. doi: 10.3879/j.issn.1000-0887.2010.05.011
    [10]HU Yuan-tai, LI Guo-qing, JIANG Shu-nong, HU Hong-ping, YANG Jia-shi. Interaction of Electric Charges in a Piezoelectric With Rigid External Cracks[J]. Applied Mathematics and Mechanics, 2005, 26(8): 911-920.
    [11]WANG Xiao-gang, HUANG Yi. 3-D Dynamic Response of Transversely Isotropic Saturated Soils[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1278-1286.
    [12]GAO Cun-fa, Herbert Balke. Green’s Functions of Internal Electrodes Between Two Dissimilar Piezoelectric Media[J]. Applied Mathematics and Mechanics, 2005, 26(2): 215-221.
    [13]LI Ying-hui, GAO Qing, JIAN Kai-lin, YIN Xue-gang. Dynamic Responses of Viscoelatic Axially Moving Belt[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1191-1196.
    [14]YAN Bo, ZHANG Ru-qing. Penalty Finite Element Method for Nonlinear Dynamic Response of Viscous Fluid-Saturated Biphasic Porous Media[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1247-1254.
    [15]Xu Changjie, Wu Shiming. Spherical Wave Propagation in Satuated Soils[J]. Applied Mathematics and Mechanics, 1998, 19(3): 222-231.
    [16]Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate(Ⅱ)——Theoretical Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(2): 95-103.
    [17]Liu Jinxi, Wang Biao, Du Shanyi. Electro-Elastic Green’s Functions for a Piezoelectric Half-Space and Their Application[J]. Applied Mathematics and Mechanics, 1997, 18(11): 967-973.
    [18]Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216.
    [19]Yin Bangxin. Analysis of Dynamic Responce of an impacted Elastic Plate[J]. Applied Mathematics and Mechanics, 1996, 17(7): 639-644.
    [20]Fu Yi-ming, Liu Xiao-hu. Nonlinear Dynamic Response and Dynamic Buckling of Shallow Spherical Shells with Circular Hole[J]. Applied Mathematics and Mechanics, 1992, 13(2): 145-156.
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 87.4 %META: 87.4 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.1 %其他: 5.1 %China: 0.5 %China: 0.5 %Clarks Summit: 0.1 %Clarks Summit: 0.1 %Singapore: 0.5 %Singapore: 0.5 %上海: 0.8 %上海: 0.8 %丽水: 0.1 %丽水: 0.1 %北京: 3.7 %北京: 3.7 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %喀什: 0.1 %喀什: 0.1 %喀什地区: 0.2 %喀什地区: 0.2 %张家口: 3.7 %张家口: 3.7 %成都: 0.3 %成都: 0.3 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %深圳: 0.2 %深圳: 0.2 %漯河: 0.1 %漯河: 0.1 %石家庄: 2.1 %石家庄: 2.1 %芒廷维尤: 15.1 %芒廷维尤: 15.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %西宁: 64.9 %西宁: 64.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.1 %重庆: 0.1 %镇江: 0.1 %镇江: 0.1 %其他ChinaClarks SummitSingapore上海丽水北京南京南宁哥伦布喀什喀什地区张家口成都武汉洛杉矶深圳漯河石家庄芒廷维尤芝加哥苏州西宁西安贵阳运城郑州重庆镇江

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1379) PDF downloads(762) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return